Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature
This paper presents the study of the influence that air activation rate and reforming temperature have on the gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The analysis of product composition showed that the conversion efficiency of ethano...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/115462 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature / O.A. Nedybaliuk, V.Ya. Chernyak, I.I. Fedirchyk, V.P. Demchina, V.A. Bortyshevsky, R.V. Korzh // Вопросы атомной науки и техники. — 2016. — № 6. — С. 276-279. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115462 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1154622017-04-06T03:02:30Z Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature Nedybaliuk, O.A. Chernyak, V.Ya. Fedirchyk, I.I. Demchina, V.P. Bortyshevsky, V.A. Korzh, R.V. Low temperature plasma and plasma technologies This paper presents the study of the influence that air activation rate and reforming temperature have on the gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The analysis of product composition showed that the conversion efficiency of ethanol has a maximum in the studied range of reforming temperatures. Researched system provided high reforming efficiency and high hydrogen energy yield at the lower temperatures than traditional conversion technologies. Изложено исследование влияния степени активации воздуха и температуры реформирования на состав газообразных продуктов плазменно-каталитического реформирования этанола и на его эффективность. Анализ состава полученных продуктов показал, что эффективность реформирования имеет максимум в исследованном диапазоне температур. Исследованная система имеет высокую эффективность реформирования и высокий энергетический выход водорода при температурах ниже, чем в традиционных технологиях реформирования. Представлено дослідження впливу ступеня активації повітря та температури реформування на склад газоподібних продуктів реформування етанолу та на його ефективність. Аналіз складу продуктів реформування показав, що ефективність реформування має максимум у дослідженому діапазоні температур реформування. Досліджена система забезпечує високу ефективність реформування та високий енергетичний вихід водню за температур, що є нижчими, ніж у традиційних технологіях реформування. 2016 Article Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature / O.A. Nedybaliuk, V.Ya. Chernyak, I.I. Fedirchyk, V.P. Demchina, V.A. Bortyshevsky, R.V. Korzh // Вопросы атомной науки и техники. — 2016. — № 6. — С. 276-279. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 50. 52., 52.50.Dg http://dspace.nbuv.gov.ua/handle/123456789/115462 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Nedybaliuk, O.A. Chernyak, V.Ya. Fedirchyk, I.I. Demchina, V.P. Bortyshevsky, V.A. Korzh, R.V. Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature Вопросы атомной науки и техники |
description |
This paper presents the study of the influence that air activation rate and reforming temperature have on the
gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The
analysis of product composition showed that the conversion efficiency of ethanol has a maximum in the studied
range of reforming temperatures. Researched system provided high reforming efficiency and high hydrogen energy
yield at the lower temperatures than traditional conversion technologies. |
format |
Article |
author |
Nedybaliuk, O.A. Chernyak, V.Ya. Fedirchyk, I.I. Demchina, V.P. Bortyshevsky, V.A. Korzh, R.V. |
author_facet |
Nedybaliuk, O.A. Chernyak, V.Ya. Fedirchyk, I.I. Demchina, V.P. Bortyshevsky, V.A. Korzh, R.V. |
author_sort |
Nedybaliuk, O.A. |
title |
Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature |
title_short |
Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature |
title_full |
Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature |
title_fullStr |
Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature |
title_full_unstemmed |
Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature |
title_sort |
plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115462 |
citation_txt |
Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature / O.A. Nedybaliuk, V.Ya. Chernyak, I.I. Fedirchyk, V.P. Demchina, V.A. Bortyshevsky, R.V. Korzh // Вопросы атомной науки и техники. — 2016. — № 6. — С. 276-279. — Бібліогр.: 17 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT nedybaliukoa plasmacatalyticreformingofethanolinfluenceofairactivationrateandreformingtemperature AT chernyakvya plasmacatalyticreformingofethanolinfluenceofairactivationrateandreformingtemperature AT fedirchykii plasmacatalyticreformingofethanolinfluenceofairactivationrateandreformingtemperature AT demchinavp plasmacatalyticreformingofethanolinfluenceofairactivationrateandreformingtemperature AT bortyshevskyva plasmacatalyticreformingofethanolinfluenceofairactivationrateandreformingtemperature AT korzhrv plasmacatalyticreformingofethanolinfluenceofairactivationrateandreformingtemperature |
first_indexed |
2025-07-08T08:49:09Z |
last_indexed |
2025-07-08T08:49:09Z |
_version_ |
1837067979734384640 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
276 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 276-279.
PLASMA-CATALYTIC REFORMING OF ETHANOL: INFLUENCE
OF AIR ACTIVATION RATE AND REFORMING TEMPERATURE
O.A. Nedybaliuk
1
, V.Ya. Chernyak
1
, I.I. Fedirchyk
1
, V.P. Demchina
2
, V.A. Bortyshevsky
3
,
R.V. Korzh
3
1
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
2
The Gas Institute of National Academy of Sciences of Ukraine, Kyiv, Ukraine;
3
Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences
of Ukraine, Kiev, Ukraine
E-mail: oanedybaliuk@gmail.com
This paper presents the study of the influence that air activation rate and reforming temperature have on the
gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The
analysis of product composition showed that the conversion efficiency of ethanol has a maximum in the studied
range of reforming temperatures. Researched system provided high reforming efficiency and high hydrogen energy
yield at the lower temperatures than traditional conversion technologies.
PACS: 50. 52., 52.50.Dg
INTRODUCTION
In order to achieve truly sustainable economy
humanity has to shift production to the renewable raw
materials wherever it is possible [1]. A shift from the
fossil hydrocarbons to the renewable raw materials
produced from the biomass is the biggest and most
essential of such transitions for reaching the goals of the
sustainable development. The main technological issue
that slows down widespread implementation of
renewable hydrocarbons lies in the lack of the well-
developed methods for the efficient conversion of the
renewable hydrocarbon raw materials into the desired
final or intermediate products [2]. The traditional
conversion technologies, such as thermos-chemical or
catalytic reforming, were developed and optimized with
fossil hydrocarbons in mind, which have less complex
and varied composition than renewable ones. The
application of thermochemical technologies to the
renewable raw materials often results in the generation
of undesirable products and consumes large quantities
of energy. The catalytic approaches use significantly
less energy, however, they often have diminished yields
and lower lifetime of the employed catalysts compared
to the conversion of fossil hydrocarbons [3]. The cause
of decreased catalyst performance lies in the catalyst
poisoning by the impurities that are present in the raw
materials. As such, catalytic conversion requires the
extensive preprocessing and cleaning of the renewable
raw materials.
Plasma is a chemically active environment with the
high concentration of active species (ions, electrons,
radicals, excited particles etc.) and can stimulate and
support the long-chain chemical reactions. This effect is
known in plasma chemistry as plasma catalysis [4]. The
use of plasma catalysis in place of the conventional
catalyst removes the possibility of the catalyst poisoning
and provides additional benefits, such as short reaction
times and high degree of control over the process. The
experiments on the plasma-catalytic reforming showed
that it can achieve high values of conversion efficiency
at low energy input [5]. Despite the effectiveness of
plasma-catalytic reforming systems, the impact of
various reforming parameters on the conversion
processes and on its efficiency remains largely
unstudied.
In order to gain a better understanding of the
processes during the plasma-catalytic reforming of the
renewable hydrocarbons we studied the plasma-catalytic
conversion of ethanol in a reforming system based on
rotating gliding discharge. This paper focuses on the
impact of air activation rate and reforming temperature
on the composition of gaseous reforming products. The
air activation rate represents the ratio of air activated in
discharge chamber to the total flow of air that is
introduced into the reforming system during the
conversion.
1. EXPERIMENTAL SET-UP
Fig. 1 shows the simplified scheme of the
experimental setup.
Fig.1. Schematic of experimental setup: 1 – discharge
chamber; 2 – reaction chamber; 3 – cooler;
4 – condenser; 5 – combustion of produced gas
ISSN 1562-6016. ВАНТ. 2016. №6(106) 277
During the experiment we conducted the partial
oxidation reforming of 96 % ethanol using atmospheric
air. The chemical equation of partial oxidation reaction
(1):
С2Н5ОН + 0.5О2 = 2СО + 3Н2. (1)
Reforming system features two connected chambers:
a discharge chamber (1) and a reaction chamber (2). The
flow of air that is required for the reforming is supplied
into the system by a compressor and separated between
both chambers. The air injected into the discharge
chamber is activated by the discharge and used as a
basis for the generation of active species. The air
introduced into the reaction chamber is mixed with the
ethanol. Airflows in both chambers are introduced
tangentially to the chamber wall. The air injection is set
to create the vortex flow of air in the discharge chamber
and reverse vortex flow in the reaction chamber. We
controlled the air activation rate by changing the ratio
between the flows of air injected into the discharge and
air introduced into the reaction chamber.
The air plasma produced in the rotating gliding
discharge is injected into the reaction chamber as a
torch. The power introduced into the discharge ranged
from 20 to 70 W. The active species in air plasma
interact with the air-ethanol mixture and initiate the
chain reactions of partial oxidation reforming. The
temperature in the reaction chamber can be regulated by
either using an external electric heater coil or by
increasing the input airflows and causing the complete
oxidation of ethanol in the reaction chamber. The
temperature was monitored by the thermocouples
attached to the top and bottom of the reaction chamber.
The products of ethanol reforming flow through a
water cooler (3) that uses running tap water at room
temperature. A part of the products condenses into
liquid and is captured in a condenser (4). The gaseous
products leave the condenser and flow towards either a
sampling port or a combustion device (5). The samples
of gaseous reforming products were collected in the
0.5 l glass flasks. The rest of produced gas is combusted
in order to prevent its accumulation in the experimental
setup.
The composition of gaseous reforming products was
determined using Agilent 6890 N gas chromatograph
and МХ-7301 mass spectrometer. The total flow of
produced gas was measured by Dwyer RMA-22-SSV
and RMA-23-SSV rotameters.
2. RESULTS AND DISCUSSION
For all studied reforming modes ethanol flow into
reaction chamber was 256 g/h and discharge current was
set to 60 mA. The influence of the reforming
temperature on the composition of gaseous reforming
products was studied at reforming temperatures from
200 to 350
o
C range. The air activation rate was set to
0.17, which is the minimum used in this research. The
total airflow corresponded to a chemical equation (2):
С2Н5ОН + 0.6О2 = 1.92СО + 2.88Н2 +
+ 0.12Н2O + 0.08CO2. (2)
The gas chromatography results for the gaseous
reforming products are shown at Fig. 2.
Fig. 2. Dependence of main gaseous products flows on
reforming temperature
The main reforming products are hydrogen, carbon
monoxide, and light hydrocarbons, such as methane and
ethane.
Gas chromatography showed that the production of
hydrogen, carbon monoxide and methane during
reforming had a maximum at 250
o
C. Obtained data on
product composition allows to calculate the reforming
efficiency (η) using equation (3) [6]:
where LHVproducts is the combined lower heating value of
all gaseous reforming products with an exception of the
unreacted reactants, Gproducts is the total flow of gaseous
reforming products, Plasma power is the energy input
into the plasma generation, LHVreactants is the combined
lower heating value of all reactants, Greactants is the total
flow of reactants.
The efficiency of the reforming system in terms of
hydrogen production can be evaluated from its
hydrogen energy yield EY(H2). It corresponds to the
flow of produced hydrogen G(H2) divided by the
electric power spent on plasma generation Plasma
power:
The Plasma power was 30 W at 200
o
C and 24 W at
250, 300 and 350
o
C. The values of H2/CO ratio,
conversion efficiency and hydrogen energy yield during
the conversion at different reforming temperatures are
presented in Table 1.
Table 1
Reforming characteristics at different reforming
temperatures at 0.17 air activation rate
Reforming temperature,
[
o
C]
200 250 300 350
H2/CO ratio 0.8 0.75 0.74 0.85
η, [%] 72 90 84 81
EY(H2), [g/kWh] 230 350 285 265
The highest conversion efficiency observed during
the experiment was 90 % when the reforming
temperature was maintained at 250
o
C. Such conversion
efficiency is comparable to the value during the ethanol
conversion at the optimal regimes of catalytic partial
278 ISSN 1562-6016. ВАНТ. 2016. №6(106)
oxidation and during the thermochemical reforming.
The reforming temperature is two times lower than the
common temperature used for the catalytic partial
oxidation (approx. 500
o
C [7]) and almost three times
lower than the lower limit of the temperature used for
the thermochemical reforming (> 700
o
C [8]).
The H2/CO ratio of the gaseous reforming products
depends on the reforming temperature and was in range
from 0.74 to 0.85.
We studied the influence of the air activation rate on
the composition of reforming products and reforming
efficiency by keeping the reaction chamber at constant
temperature and changing the ratio between the flows of
air injected into the discharge chamber and air injected
into the reaction chamber. The air activation rates were
0.17, 0.21, 0.5, and 0.61. Reforming temperature was
maintained at 250
o
C.
The flows of different gaseous reforming products at
studied air activation rates are shown at Fig. 3.
Gas chromatography data showed that the increase
of air activation rate has small impact on the hydrogen
yield, which remains almost constant. The increase of
air activation rate from 0.17 to 0.61 leads to the
decrease of carbon monoxide yield by approx. 20 % and
the reduction of methane yield by approx. 50 %. The
increase of carbon dioxide flow at higher air activation
rates can imply the increased occurrence of complete
oxidation reactions during reforming.
The change of the ratio between the air flows
through the discharge and reaction chambers controlled
the air activation rate. However, the increase of flow
through discharge gap caused the rise of voltage needed
to maintain the rotating gliding discharge, which
resulted in the increase of Plasma power. The
Plasma power and reforming characteristics at the
different air activation rates are shown at Table 2.
Fig. 3. Dependence of main gaseous products flows
on air activation rate
Table 2
Reforming characteristics at different air activation
rates at 250
o
C reforming temperature
Air activation rate 0.17 0.21 0.5 0.61
Plasma power, [W] 24 24 60 48
H2/CO ratio 0.75 0.77 0.87 0.92
η, [%] 90 86 79 73
EY(H2), [g/kWh] 350 315 130 175
The data shows that the increase of air activation
rate leads to the increase of H2/CO ratio in the gaseous
reforming products. While the yield of hydrogen
remains approximately the same, the yield of carbon
monoxide and light hydrocarbons decreases with the
increase of air activation rate. This, in addition to the
increased value of Plasma power, causes the decrease of
reforming efficiency from 90 % at 0.17 air activation
rate to 73 % at 0.61 air activation rate.
The highest values of reforming efficiency and
hydrogen energy yield in the different systems for the
plasma-assisted reforming of ethanol are presented in
Table 3.
Table 3
Reforming efficiency and hydrogen energy yield in
different systems for plasma-assisted conversion of ethanol
Plasma source Reaction
η,
[%]
EY(H2),
[g/kWh]
Laval nozzle arc [9]
Partial
oxidation
<90 200
Dielectric barrier
discharge [10]
Dry
reforming
>95 6.7
Microwave
discharge (2.45
GHz) [11]–[13]
Pyrolysis ~99 0.55
Microwave
discharge [14]
Pyrolysis ~100 14.8
Arc discharge [15]
Partial
oxidation
<65 120
GEN3
[16], [17]
Partial
oxidation
<70 144
Dielectric barrier
discharge [10]
Steam
reforming
100 13.3
Rotating gliding
discharge (this work)
Partial
oxidation
90 350
The data presented in Table 1 shows that the plasma-
catalytic reforming system studied in this work shows
both high reforming efficiency and high hydrogen
energy yield.
CONCLUSIONS
The impact of reforming temperature and air
activation rate on the gaseous reforming products
composition and the reforming efficiency was studied
using the plasma-catalytic reforming system based on
rotating gliding discharge. The reforming efficiency
obtained during the plasma-catalytic conversion of
ethanol at approx. 250
o
C is comparable to that of
thermochemical conversion at > 700
o
C or catalytic
partial oxidation at approx. 500
o
C. The highest
reforming efficiency in the reforming temperature range
of 200…350
o
C was approx. 90 % at 250
o
C. The flows
of produced hydrogen, carbon monoxide and methane
depend on the reforming temperature and during the
experiment all had maxima at 250
o
C. During the
increase of the air activation rate the hydrogen
production rate remains constant, while the carbon
ISSN 1562-6016. ВАНТ. 2016. №6(106) 279
monoxide production rate decreases. This leads to the
increase of H2/CO ratio and to the decrease of reforming
efficiency with the increase of air activation rate.
The energy yield of produced hydrogen decreases
with the increase of air activation rate. The hydrogen
energy yield of the plasma-catalytic reforming system
with rotating gliding discharge reached 350 g/kWh. This
value is among the highest values reached by the
systems for the plasma-assisted conversion of ethanol.
ACKNOWLEDGEMENTS
This work was supported in part by the Ministry of
Education and Science of Ukraine, National Academy
of Sciences of Ukraine, and Taras Shevchenko National
University of Kyiv.
REFERENCES
1. R.A. Sheldon, I. Arends, U. Hanefeld. Green
Chemistry and Catalysis. Weinheim, Germany: "Wiley-
VCH Verlag GmbH & Co". KGaA, 2007.
2. M. Crocker. Thermochemical Conversion of Biomass
to Liquid Fuels and Chemicals. Cambridge: "Royal
Society of Chemistry", 2010.
3. S. Siddiqui, D. Friedman, J. Alper. Opportunities and
Obstacles in Large-Scale Biomass Utilization: The Role
of the Chemical Sciences and Engineering
Communities: A Workshop Summary. The National
Academies Press, 2012.
4. A. Fridman. Plasma Chemistry. Cambridge:
Cambridge University Press, 2008.
5. O.A. Nedybaliuk, I.I. Fedirchyk, V.Ya. Chernyak,
V. Bortyshevskyy, et al. Plasma-Catalytic Reforming of
Raw Material for Biodiesel Production // Plasma
Physics and Technology. 2015, v. 2, № 2, p. 171-174.
6. V.I. Parvulescu, M. Magureanu, P. Lukes. Plasma
Chemistry and Catalysis in Gases and Liquids.
Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.
KGaA, 2012.
7. L.V. Mattos, F.B. Noronha. Partial oxidation of
ethanol on supported Pt catalysts // Journal of Power
Sources. 2005, v. 145, № 1, p. 10-15.
8. R.L. Bain, L.L. Baxter, A.V. Bridgwater, K. Broer, et
al. Thermochemical Processing of Biomass. Chichester,
UK: John Wiley & Sons, Ltd, 2011.
9. C. Du, H. Li, L. Zhang, et al. Hydrogen production
by steam-oxidative reforming of bio-ethanol assisted by
Laval nozzle arc discharge // International Journal of
Hydrogen Energy. 2012, v. 37, № 10, p. 8318-8329.
10. B. Sarmiento, J.J. Brey, I.G. Viera, et al. Hydrogen
production by reforming of hydrocarbons and alcohols
in a dielectric barrier discharge // Journal of Power
Sources. 2007, v. 169, № 1, p. 140-143.
11. J. Henriques, N. Bundaleska, E. Tatarova, et al.
Microwave plasma torches driven by surface wave
applied for hydrogen production // International Journal
of Hydrogen Energy. 2011, v. 36, № 1, p. 345-354.
12. D. Tsyganov, N. Bundaleska, E. Tatarova,
C.M. Ferreira. Ethanol reforming into hydrogen-rich gas
applying microwave ‘tornado’-type plasma //
International Journal of Hydrogen Energy. 2013, v. 38,
№ 34, p. 14512-14530.
13. E. Tatarova, N. Bundaleska, F. Dias, et al. Hydrogen
production from alcohol reforming in a microwave
‘tornado’-type plasma // Plasma Sources Science and
Technology. 2013, v. 22, p. 65001.
14. B. Hrycak, D. Czylkowski, R. Miotk, M. Dors,
M. Jasinski, J. Mizeraczyk. Hydrogen production from
ethanol in nitrogen microwave plasma at atmospheric
pressure // Open Chemistry. 2014, v. 13, p. 317-324.
15. G. Petitpas, J. Gonzalez-Aguilar, A. Darmon,
L. Fulcheri. Ethanol and E85 Reforming Assisted by a
Non-thermal Arc Discharge // Energy & Fuels. 2010,
v. 24, № 4, p. 2607-2613.
16. G. Petitpas, J. Rollier, A. Darmon, et al. A
comparative study of non-thermal plasma assisted
reforming technologies // International Journal of
Hydrogen Energy. 2007, v. 32, № 14, p. 2848-2867.
17. K. Hadidi, L. Bromberg, D. Cohn, A. Rabinovich, et
al. Hydrogen-Rich Gas Production from Plasmatron
Reforming of Biofuels // World Renewable Energy
Congress VIII and Expo, 2004, PSFC/JA-04-22, p. 5.
Article received 23.10.2016
ПЛАЗМЕННО-КАТАЛИТИЧЕСКОЕ РЕФОРМИРОВАНИЕ ЭТАНОЛА: ВЛИЯНИЕ СТЕПЕНИ
АКТИВАЦИИ ВОЗДУХА И ТЕМПЕРАТУРЫ РЕФОРМИРОВАНИЯ
О.А. Недыбалюк, В.Я. Черняк, И.И. Федирчик, В.П. Демчина, В.А. Бортышевский, Р.В. Корж
Изложено исследование влияния степени активации воздуха и температуры реформирования на состав
газообразных продуктов плазменно-каталитического реформирования этанола и на его эффективность.
Анализ состава полученных продуктов показал, что эффективность реформирования имеет максимум в
исследованном диапазоне температур. Исследованная система имеет высокую эффективность
реформирования и высокий энергетический выход водорода при температурах ниже, чем в традиционных
технологиях реформирования.
ПЛАЗМОВО-КАТАЛІТИЧНЕ РЕФОРМУВАННЯ ЕТАНОЛУ: ВПЛИВ СТУПЕНЮ АКТИВАЦІЇ
ПОВІТРЯ ТА ТЕМПЕРАТУРИ РЕФОРМУВАННЯ
О.А. Недибалюк, В.Я. Черняк, І.І. Федірчик, В.П. Демчина, В.А. Бортишевський, Р.В. Корж
Представлено дослідження впливу ступеня активації повітря та температури реформування на склад
газоподібних продуктів реформування етанолу та на його ефективність. Аналіз складу продуктів
реформування показав, що ефективність реформування має максимум у дослідженому діапазоні температур
реформування. Досліджена система забезпечує високу ефективність реформування та високий енергетичний
вихід водню за температур, що є нижчими, ніж у традиційних технологіях реформування.
|