Recent developments in the ISTTOK heavy ion beam diagnostic

The heavy ion beam diagnostic (HIBD) presents a powerful tool for investigations of hot plasmas in thermonuclear devices with magnetic confinement. When injected into the plasma, the primary probing beam of singly charged positive ions is ionized to a doubly charged state by impact with the plasma e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Nedzelskiy, I.S., Malaquias, A., Henriques, R.B., Sharma, R.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/115467
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Recent developments in the ISTTOK heavy ion beam diagnostic / I.S. Nedzelskiy, A. Malaquias, R.B. Henriques, R. Sharma // Вопросы атомной науки и техники. — 2016. — № 6. — С. 297-301. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-115467
record_format dspace
spelling irk-123456789-1154672017-04-06T03:02:38Z Recent developments in the ISTTOK heavy ion beam diagnostic Nedzelskiy, I.S. Malaquias, A. Henriques, R.B. Sharma, R. Plasma diagnostics The heavy ion beam diagnostic (HIBD) presents a powerful tool for investigations of hot plasmas in thermonuclear devices with magnetic confinement. When injected into the plasma, the primary probing beam of singly charged positive ions is ionized to a doubly charged state by impact with the plasma electrons and separated from the primaries due to the confining magnetic field of the plasma device. The resulting secondary ions are collected outside the plasma. The plasma parameters that can be measured by the HIBD are: the plasma electron density and temperature, and the electric and magnetic potentials. On the small tokamak ISTTOK (R = 0.46 m, a = 0.085 m, B = 0.5 T, Ip = 4…6 kA, = 5 × 10¹⁸ m ⁻³ , Te = 120 eV), the HIBD is based on a 20 keV Xe⁺ (or Cs⁺ ) beam injector and a multiple cell array detector (MCAD) collecting a fan of secondary Xe²⁺ (or Cs²⁺) ions emerging from the plasma along the primary beam trajectory. This paper describes the recent developments and improvements in the ISTTOK HIBD secondary beam detection. The capabilities of new detection system are illustrated by recent results of ISTTOK plasma MHD activity and electrode biasing studies. The on going developments of the multichannel multi-slit 90o cylindrical energy analyzer for the plasma potential and its fluctuations measurements and a novel approach of the HIBD use in real-time vertical plasma position control are also considered. Диагностика пучком тяжёлых ионов (ДПТИ) является мощным инструментом в исследованиях горячей плазмы в термоядерных установках с магнитным удержанием. Инжектируемый в плазму первичный пучок однозарядных положительных ионов ионизируется в двухзарядное состояние в столкновениях с электронами плазмы. В магнитном поле плазменной установки результирующие вторичные ионы отделяются от первичного пучка и детектируются вне плазмы. Измеряемые ДПТИ параметры плазмы включают плотность, температуру электронов, электрический и магнитный потенциалы. На малом токамаке ISTTOK (R = 0,46 м, а = 0,085 м, В = 0,5 Тл, Ip = 4…6 кА, = 5 × 10¹⁸ м ⁻³, Te = 120 эВ) ДПТИ состоит из 20 кэВ инжектора Xe ⁺ (или Cs⁺) пучка и мультиколлекторного детектора (МКД) вторичных Хе²⁺ (или Cs²⁺ионов, выходящих из плазмы вдоль траектории первичного пучка. Описываются изменения и улучшения детекторной системы ДПТИ на токамаке ISTTOK. Возможности новой детекторной системы иллюстрируются недавними результатами исследований МГД-активности и поляризации плазмы. Рассматриваются также разработка многоканального мультищелевого 90o цилиндрического анализатора энергии для измерений потенциала плазмы и его флуктуаций и новый подход использования ДПТИ для контроля вертикального положения плазмы в режиме реального времени. Діагностика пучком важких іонів (ДПВІ) є потужним інструментом у дослідженнях гарячої плазми в термоядерних установках з магнітним утриманням. Iнжектований в плазму первинний пучок однозарядних позитивних іонів іонізується в двозарядний стан у зіткненнях з електронами плазми. У магнітному полі плазмової установки результуючі вторинні іони відокремлюються від первинного пучка і фіксуються поза плазми. Вимірювані ДПВІ параметри плазми включають щільність, температуру електронів, електричний і магнітний потенціали. На малому токамацi ISTTOK (R = 0,46 м, а = 0,085 м, В = 0,5 Тл, Ip = 4…6 кА, = 5×10¹⁸ м ⁻³, Te = 120 еВ) ДПВІ складається з 20 кеВ інжектора Xe+ (або Cs+ ) пучка і мультиколекторного детектора (МКД) вторинних Хе²⁺ (або Cs²⁺) іонів, які виходять з плазми уздовж траєкторії первинного пучка. Описуються зміни і поліпшення детекторной системи ДПВІ на токамацi ISTTOK. Можливості нової детекторної системи ілюструються недавніми результатами досліджень МГД-активності і поляризації плазми. Розглядаються також розробка багатоканального мультищілинного 90o циліндричного аналізатора енергії для вимірювань потенціалу плазми та його флуктуацій і новий підхід використання ДПВІ для контролю вертикального положення плазми в режимі реального часу 2016 Article Recent developments in the ISTTOK heavy ion beam diagnostic / I.S. Nedzelskiy, A. Malaquias, R.B. Henriques, R. Sharma // Вопросы атомной науки и техники. — 2016. — № 6. — С. 297-301. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.55.Fa, 52.70.-m http://dspace.nbuv.gov.ua/handle/123456789/115467 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma diagnostics
Plasma diagnostics
spellingShingle Plasma diagnostics
Plasma diagnostics
Nedzelskiy, I.S.
Malaquias, A.
Henriques, R.B.
Sharma, R.
Recent developments in the ISTTOK heavy ion beam diagnostic
Вопросы атомной науки и техники
description The heavy ion beam diagnostic (HIBD) presents a powerful tool for investigations of hot plasmas in thermonuclear devices with magnetic confinement. When injected into the plasma, the primary probing beam of singly charged positive ions is ionized to a doubly charged state by impact with the plasma electrons and separated from the primaries due to the confining magnetic field of the plasma device. The resulting secondary ions are collected outside the plasma. The plasma parameters that can be measured by the HIBD are: the plasma electron density and temperature, and the electric and magnetic potentials. On the small tokamak ISTTOK (R = 0.46 m, a = 0.085 m, B = 0.5 T, Ip = 4…6 kA, = 5 × 10¹⁸ m ⁻³ , Te = 120 eV), the HIBD is based on a 20 keV Xe⁺ (or Cs⁺ ) beam injector and a multiple cell array detector (MCAD) collecting a fan of secondary Xe²⁺ (or Cs²⁺) ions emerging from the plasma along the primary beam trajectory. This paper describes the recent developments and improvements in the ISTTOK HIBD secondary beam detection. The capabilities of new detection system are illustrated by recent results of ISTTOK plasma MHD activity and electrode biasing studies. The on going developments of the multichannel multi-slit 90o cylindrical energy analyzer for the plasma potential and its fluctuations measurements and a novel approach of the HIBD use in real-time vertical plasma position control are also considered.
format Article
author Nedzelskiy, I.S.
Malaquias, A.
Henriques, R.B.
Sharma, R.
author_facet Nedzelskiy, I.S.
Malaquias, A.
Henriques, R.B.
Sharma, R.
author_sort Nedzelskiy, I.S.
title Recent developments in the ISTTOK heavy ion beam diagnostic
title_short Recent developments in the ISTTOK heavy ion beam diagnostic
title_full Recent developments in the ISTTOK heavy ion beam diagnostic
title_fullStr Recent developments in the ISTTOK heavy ion beam diagnostic
title_full_unstemmed Recent developments in the ISTTOK heavy ion beam diagnostic
title_sort recent developments in the isttok heavy ion beam diagnostic
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2016
topic_facet Plasma diagnostics
url http://dspace.nbuv.gov.ua/handle/123456789/115467
citation_txt Recent developments in the ISTTOK heavy ion beam diagnostic / I.S. Nedzelskiy, A. Malaquias, R.B. Henriques, R. Sharma // Вопросы атомной науки и техники. — 2016. — № 6. — С. 297-301. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT nedzelskiyis recentdevelopmentsintheisttokheavyionbeamdiagnostic
AT malaquiasa recentdevelopmentsintheisttokheavyionbeamdiagnostic
AT henriquesrb recentdevelopmentsintheisttokheavyionbeamdiagnostic
AT sharmar recentdevelopmentsintheisttokheavyionbeamdiagnostic
first_indexed 2025-07-08T08:49:36Z
last_indexed 2025-07-08T08:49:36Z
_version_ 1837068010746019840
fulltext ISSN 1562-6016. ВАНТ. 2016. №6(106) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 297-301. 297 RECENT DEVELOPMENTS IN THE ISTTOK HEAVY ION BEAM DIAGNOSTIC I.S. Nedzelskiy, A. Malaquias, R.B. Henriques, R. Sharma Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal E-mail: igorz@ipfn.ist.utl.pt The heavy ion beam diagnostic (HIBD) presents a powerful tool for investigations of hot plasmas in thermonuclear devices with magnetic confinement. When injected into the plasma, the primary probing beam of singly charged positive ions is ionized to a doubly charged state by impact with the plasma electrons and separated from the primaries due to the confining magnetic field of the plasma device. The resulting secondary ions are collected outside the plasma. The plasma parameters that can be measured by the HIBD are: the plasma electron density and temperature, and the electric and magnetic potentials. On the small tokamak ISTTOK (R = 0.46 m, a = 0.085 m, B = 0.5 T, Ip = 4…6 kA, <ne> = 5 × 10 18 m −3 , Te = 120 eV), the HIBD is based on a 20 keV Xe + (or Cs + ) beam injector and a multiple cell array detector (MCAD) collecting a fan of secondary Xe 2+ (or Cs 2+ ) ions emerging from the plasma along the primary beam trajectory. This paper describes the recent developments and improvements in the ISTTOK HIBD secondary beam detection. The capabilities of new detection system are illustrated by recent results of ISTTOK plasma MHD activity and electrode biasing studies. The on going developments of the multichannel multi-slit 90 o cylindrical energy analyzer for the plasma potential and its fluctuations measurements and a novel approach of the HIBD use in real-time vertical plasma position control are also considered. PACS: 52.55.Fa, 52.70.-m INTRODUCTION The heavy ion beam diagnostic (HIBD) has been a subject of study in fusion plasma diagnostics for about fifty years since the pioneering work of the HIBD inventors F. Jobes and R. Hickok on the ST tokamak [1]. The HIBP principle is rather simple and explained by Fig. 1. Fig. 1. HIBD principle A beam of single charged ions (primary ions) is injected into the plasma across the confined magnetic field. The ions of double charge state (secondary ions) are created in collisions with plasma electrons and, after separation from the primary beam due to magnetic field, are collected outside the plasma. For a fixed single point detector the position of ionization point (sample volume) can be effectively moved with changing of beam injection angle and/or energy. Alternatively, the fan of secondary ions emerging from primary beam along the fixed trajectory crossing the plasma can be collected by a multiple cell detector. In such detection scheme a number of sample volumes are recorded simultaneously which is essential in investigation of the plasma parameters fluctuations. The intensity of the secondary beam relates to the plasma parameters as: Is = 2IpFplFs1eff(Te)lsvne(rsv), where Ip is the intensity of the primary beam, Fpl and Fs1 are the primary and secondary beam exponential attenuation factors, eff(Te) is the effective ionization cross-section (function of the plasma electron temperature), lsv is the sample volume dimension, and ne(rsv) is the average over the sample volume plasma electron density. This relation is the basis for the plasma electron density and temperature measurements. On the other hand, the energy of the secondary ion at the ionization point is changed exactly as the local plasma potential value, thus allowing for the measurements of that important plasma parameter. Also, the HIBP capability to retrieve plasma current profile from the measurements of secondary beam shift due to the plasma current magnetic field should be mentioned. Fig. 2. Schematic of HIBD on the tokamak ISTTOK 298 ISSN 1562-6016. ВАНТ. 2016. №6(106) The HIBD on the small tokamak ISTTOK (R = 0.46 m, a = 0.085 m, B = 0.5 T, Ip = 4-6 kA, <ne> = 5 × 10 18 m −3 , Te = 120 eV) is based on the 20 keV Xe + (or Cs + ) beam injector (operating with plasma ion source [2]) and a multiple cell array detector (MCAD) collecting a fan of secondary Xe 2+ (or Cs 2+ ) ions emerging from the plasma along the primary beam trajectory as sketched in Fig. 2. The MCAD (the picture also shown in Fig. 2) basically presents a flat matrix of a number of collector cells [3]. With such very simple MCAD, the profiles of plasma electron density and temperature were measured in early experiments with HIBD on the ISTTOK [4]. Also, the plasma current profile evolution was obtained from the measurements of toroidal shifts of the secondary ions [5]. 1. RECENT DEVELOPMENTS AND ILLUSTRATIVE RESULTS When studying the turbulent characteristic of the plasma, a high gain, wide bandwidth and low noise detectors and amplifiers are required. Recent developments and improvements of the ISTTOK HIBD secondary beam detection allow for the increase of the detector signal-to-noise ratio and amplifiers bandwidth, thus improving the overall performance of the HIBD operation and quality of the obtained data. 1.1. MCAD AND ELECTRONICS Measurements with MCAD are efficient in a close to the plasma arrangement of the detector, operating therefore in strong radiation environment (mainly UV), that can result in spurious background signal from the cells due to electron emission effect. To achieve an effective shielding from emitted electrons, in the new MCAD design the cells are not flat, but consist of two similar geometry /L-like shaped copper plates combined together as shown in Fig. 3. Fig. 3. Sketch and picture of new MCAD In such configuration, the cell presents an effectively Faraday cup-like structure 10 mm of deepness. 12 cells are individually attached in a column stack fixed on insulator plate and then painted by colloidal graphite to reduce the electron emission yield. The stack is shielded by a copper plate baffle arrangement with opening face (1260 mm) to the plasma. In this new version of the MCAD the bottom L-plates of the cells are opened for the secondary ions and plasma radiation. Contrary, the top -plates of the cells are almost completely shielded from the secondary ions and can be biased to suppress the secondary electrons and photo-electrons created on the bottom plates. Fig. 4 illustrates the efficiency of the modified MCAD on an example of the square-wave chopped secondary ions signal obtained on one MCAD cell in two plasma shots without and with cell biasing at -3 V. Fig. 4. Signal from one cell without and with biasing Complete suppression of the plasma background signal is achieved. The HIBD signal conditioning system has been improved with elaborated small size and low cost transimpedance two stages amplifiers with gain of 210 7 V∕A, 0.5 nA, rms of noise and 400 kHz bandwidth. The whole amplification system consists of up to 50 amplifier modules connected side by side in several layers, Fig. 5,a. One side is connected directly to the tokamak diagnostic port flange with two D25 connectors. The amplification system is powered by batteries and shielded with Mu-metal box to reduce the electromagnetic induced noise, Fig. 5,b. Signals, coming from the amplifiers, are digitized at 2 MHz sampling rate and stored by the ISTTOK data acquisition system. Fig. 5. Pictures of amplification system The improved detection system results in 3 time increase of the signal-to-noise ratio. 1.2. STUDY OF MHD ACTIVITY [7] The results presented in this subsection have been obtained in the ISTTOK discharges with BT = 0.45 T, Ip = 6 kA, and <ne> = 4 × 10 18 m −3 , characterized by repetitive bursts of MHD activity and density drops. It should be noted that the core electron temperature in the ISTTOK is not high, ~120 eV, meaning that the HIBD signal amplitude and profile is not only determined by the plasma electron density value and profile, but also by the value and profile of the electron temperature (via 1,2(Te)). Therefore, for ISTTOK plasmas it is more correct to speak about measurements of the ne1,2(Te) product profile, which may be considered as a proxy of the plasma pressure. Fig. 6 shows the combined view of the ne1,2(Te) profile, the signals from the Mirnov coil, and the line integrated density during the MHD event. The Mirnov coil signal indicates a violent and unstable growing a b ISSN 1562-6016. ВАНТ. 2016. №6(106) 299 before the crash. The ne1,2(Te) profile starts to fluctuate mainly in the plasma core with growing amplitude up to 30 % of the absolute value, correlating with the MHD fluctuations. After the crash (from 113.08 ms) the MHD activity and fluctuations in the ne1,2(Te) profile are significantly reduced and the plasma remains in a “quiescent” state during some time. Fig. 6. ne1,2(Te) profile, Mirnov coil signal, and the line integrated density during the MHD event Fig. 7 presents a detail view of ne1,2(Te) radial profile during the MHD event (112.8…113.2 ms) indicating the transition from a peaked to flat profile. However, the integrated value of ne1,2(Te) remains the same (<2% of variation) before and after the crash, while the line integrated density signal drops on 40% (as measured by interferometer). The observed property can be due to above mentioned combined response of the ne1,2(Te) product on variations in ne and Te. Fig. 7. ne1,2(Te) radial profile during MHD event As the effective detector line of ISTTOK HIBD intersects plasma almost by strait line crossing the plasma axis (see Fig. 1), it presents an interest to search and identify a tearing mode (TM) structure by the phase reversal of the respective fluctuations between two neighboring cells. Such a signature have been observed in the ISTTOK discharge with slow ramp-up plasma current (4…7 kA in 18 ms) as shown in Fig. 8 for filtered HIBD signals at the dominant MHD frequency (50…70 kHz) of m=4 mode. Fig. 8. Signals from MCAD cells A clear phase reversal between two successive cells (marked by dashed lines) is observed, indicating the rational flux surface location at r ∼ ± 2 cm. 1.3. ELECTRODE BIASING EXPERIMENTS Edge plasma biasing experiments have been performed on many tokamaks demonstrating a clear correlation between the E×B flow shear velocity and turbulence control [8]. In ISTTOK, the plasma fluctuations can be measured in the whole minor radius using the HIBD (core and inner edge) and LPs (edge) diagnostics together, that present a special interest as the link between plasma core and edge can be studied. Typically, to maximize the improvement in confinement, a movable graphite electrode is located 2…2.5 cm inside the last closed flux surface and biased at +80 V. Improved confinement regimes in ISTTOK are characterized by an averaged plasma density <ne> increase, Hα radiation decrease, edge turbulent transport decrease as shown in Fig. 9. Fig. 9. <ne>, Hα, EB current, ETT during biasing Fig. 10 presents the neσeff(Te) and ion saturation current Isat profiles during normal and improved confinement phases. During EB, the neσeff(Te) profile is peaked, while Isat flattened. Fig. 10. neσeff(Te) and Isat profiles during biasing The evolution of the turbulent transport and the neσeff(Te) profile during a full EB cycle is shown in Fig. 11. Just after EB transitions (solid vertical lines) the transport is modified within the turbulence characteristic time of ~10 μs. The neσeff(Te) profile major changes, indicated by the dashed lines in Fig. 11, only happen after ~150 μs, corresponding to the particle confinement time. It is also observed that the neσeff(Te) profile reaches its maximum about 1ms after the EB is applied. Fig. 11. Turbulent transport and the neσeff(Te) profile during EB 300 ISSN 1562-6016. ВАНТ. 2016. №6(106) During non EB, HIBD peripheral signals are usually dominated by MHD activity fluctuations (confirmed by Mirnov coils signal). When EB is applied, the MHD activity strongly decreases on both peripheral HIBD channels and Mirnov coils as illustrated in Fig. 12. It is also observed an increase of fluctuations in the central HIBD channels the nature of which is a matter for future research. Fig. 12. Spectrogram of MCAD and one MC signals during EB 2. ON GOING DEVELOPMENTS 2.1. 90 o CYLINDRICAL ENERGY ANALYZER In order to extend the capabilities of MCAD to measure the plasma potential and its fluctuations in the E/E < 10 -3 range, a multiple-channel multi-slit 90 o cylindrical energy analyzer (CEA) has been proposed, Fig. 13. The main advantage of the considered 90 o CEA is compactness to suit the geometric constraints of experimental conditions on ISTTOK. The SIMION code has been applied to minimize the angular aberration and to increase the energy resolution beyond the ideal, implementing an approach to take advantage of the strong lensing properties of fringing fields [9] and deceleration inside CEA. Fig. 13. 90 o cylindrical energy analyzer The best results have been obtained for the initially inclined (in = -5 o ) double charged (q = 2) beam entering the CEA entrance slit slightly below the centerline R0 (lshift = -2 mm), decelerated from 20 keV to 4 keV passing through the lens formed by fringing field between entrance slit (Ven = 0 kV) and CEA plates (Vp = 8.4 kV, Vn = 7.6 kV) and collected on exit electrode kept at Vex = 8 kV. Fig. 14 illustrates visually the energy dispersion (E0 = 19.7, 20, 20.3 keV, in = -5 o , Fig. 14,a), focusing (in = -7 o , -5 o , -3 o , E0 = 20 keV, Fig. 14, b) and the magnification (wb0 = 2.5 mm, Fig. 14,c) properties of the considered 90 o CEA and Gaussian beam. Fig. 14. SIMION results for 90 o CEA Fig. 15. Resolution property of 90 o CEA Finally, Fig. 15 presents a visual representation of two Gaussian beams wb0 =1.5 mm of width and  = ±0.5 o of divergence differed in energy on 20 V (20 keV top and 20.02 keV bottom). From the figure, the results of numerical simulations of real 90 o CEA predicts the energy resolution of E/E = 3×10 -4 , that is in the range of plasma potential fluctuations. Also, sufficient decrease of the angular aberration in the range of  = ± 2 o is demonstrated. Recalculated to the energy, the residual angle aberration is equivalent to E/E = 8.5×10 -5 of energy change for  = ± 0.5 o of expected misalignment and beam divergence ranges. 2.2. REAL-TIME VERTICAL PLASMA POSITION CONTROL Successful operation of the tokamak relies on the real-time control of plasma position. Such control consists on the measurement, data processing and actuation within an appropriate time window. In the ISTTOK the plasma position is controlled by magnetic fields generated on external coils. The current flowing into the coils is real-time controlled using the ISTTOK control system having a control cycle of 100 μs during which it reads all the plasma position-related diagnostics (Mirnov coils, Langmuir probes) connected to the Advanced Telecommunications Computing Architecture (ATCA) digitizers and sends the control reference to the ISTTOK actuators. The HIBD measures locally and simultaneously the neσeff (Te) product at 12 sample volumes vertically distributed along the plasma region of -0.06 m < r < 0.06 m. Since the plasma equilibrium is related with the plasma pressure and the neσeff (Te) product may be considered as a proxy for the plasma pressure, it is expected that the neσeff (Te) will give more accurate measurements for the plasma position than the currently used diagnostics. A high signal-to-noise ratio of the vertical plasma position measurement is achieved by high, 150 kHz, frequency modulation (chopping) of the primary beam to discriminate the beam signal from the background noise. Providing one profile per chopping period it is a b ISSN 1562-6016. ВАНТ. 2016. №6(106) 301 possible to obtain up to 15 neσeff(Te) profiles in one real- time cycle of 100 s. This work is in the initial stage. SUMMARY AND FUTURE PLANS The new MCAD of ISTTOK HIBD is characterized by complete suppression of the plasma background. The improved signal conditioning electronics has high gain, 210 7 V∕A, low noise <0.5 nA, and high, up to 400 kHz, bandwidth. These improvements allow for detailed study of the plasma MHD activity and the electrode biasing regimes. Except continuation of the work in these areas, the investigations of plasma turbulence and geodesic acoustic mode (GAM) activity are considered in the nearest plans. The implementation of the multichannel multi-slit 90 o cylindrical energy analyzer will increase the ISTTOK HIBD performance to measure the plasma potential and its fluctuations. It is important that in simultaneous use of HIBD and LPs, the fluctuations can be measured across the whole plasma cross-section. Also, the work of HIBD use in real-time vertical plasma position control will be continued. ACKNOWLEDGEMENTS IPFN activities received financial support from ”Fundação para a Ciência e Tecnologia” through project UID/FIS/50010/2013. REFERENCES 1. F.C. Jobes, R. L. Hickok // Nucl. Fusion. 1970, v. 10, p. 195. 2. J.A.C. Cabral et al. // Plasma Source Sci. Technol. 1994, v. 3, p. 1. 3. J.A.C. Cabral, A. Malaquias, A. Praxedes, W. Van Toledo, C.A.F. Varandas // IEEE Transactions on Plasma Science. 1994, v. 22(4), p. 350. 4. A. Malaquias, I.S. Nedzelskii, C.A.F. Varandas, J.A.C. Cabral // Review of Scientific Instruments. 1999, v. 70(1), p. J947. 5. A. Malaquias, J.A.C. Cabral, C.A.F. Varandas, and R. Canário // Fusion Engineering and Design. 1997, v. 34-35, p. 671. 6. R.B. Henriques, I.S. Nedzelskiy, A. Malaquias, H. Fernandes // Rev. Sci. Instrum. 2012, v. 83, p. 10D705. 7. R.B. Henriques, A. Malaquias, I.S. Nedzelskiy, C. Silva, R. Coelho, H. Figueiredo, H. Fernandes // Rev. Sci. Instrum. 2014, v. 85, p. 11D848. 8. G. Van Oost et al. // Plasma Phys. Control. Fusion 2003, v. 45, p. 621. 9. E.P. Benis, T.J.M. Zouros // Nucl. Instrum. and Meth. in Phys. Res. Sec. A. 2000, v. 440(2), p. 462. Article received 19.09.2016 СОВРЕМЕННОЕ СОСТОЯНИЕ ДИАГНОСТИКИ ПЛАЗМЫ ПУЧКА ТЯЖËЛЫХ ИОНОВ НА ТОКАМАКЕ ISTTOK И.С. Недзельский, А. Малакиаш, Р.Б. Энрикеш, Р. Шарма Диагностика пучком тяжёлых ионов (ДПТИ) является мощным инструментом в исследованиях горячей плазмы в термоядерных установках с магнитным удержанием. Инжектируемый в плазму первичный пучок однозарядных положительных ионов ионизируется в двухзарядное состояние в столкновениях с электронами плазмы. В магнитном поле плазменной установки результирующие вторичные ионы отделяются от первичного пучка и детектируются вне плазмы. Измеряемые ДПТИ параметры плазмы включают плотность, температуру электронов, электрический и магнитный потенциалы. На малом токамаке ISTTOK (R = 0,46 м, а = 0,085 м, В = 0,5 Тл, Ip = 4…6 кА, <nе> = 5 × 10 18 м -3 , Te = 120 эВ) ДПТИ состоит из 20 кэВ инжектора Xe + (или Cs + ) пучка и мультиколлекторного детектора (МКД) вторичных Хе 2+ (или Cs 2 + ) ионов, выходящих из плазмы вдоль траектории первичного пучка. Описываются изменения и улучшения детекторной системы ДПТИ на токамаке ISTTOK. Возможности новой детекторной системы иллюстрируются недавними результатами исследований МГД-активности и поляризации плазмы. Рассматриваются также разработка многоканального мультищелевого 90 o цилиндрического анализатора энергии для измерений потенциала плазмы и его флуктуаций и новый подход использования ДПТИ для контроля вертикального положения плазмы в режиме реального времени. СУЧАСНИЙ СТАН ДІАГНОСТИКИ ПЛАЗМИ ПУЧКА ВАЖКИХ ІОНІВ НА ТОКАМАЦI ISTTOK І.С. Недзельський, А. Малакіаш, Р.Б. Енрікеш, Р. Шарма Діагностика пучком важких іонів (ДПВІ) є потужним інструментом у дослідженнях гарячої плазми в термоядерних установках з магнітним утриманням. Iнжектований в плазму первинний пучок однозарядних позитивних іонів іонізується в двозарядний стан у зіткненнях з електронами плазми. У магнітному полі плазмової установки результуючі вторинні іони відокремлюються від первинного пучка і фіксуються поза плазми. Вимірювані ДПВІ параметри плазми включають щільність, температуру електронів, електричний і магнітний потенціали. На малому токамацi ISTTOK (R = 0,46 м, а = 0,085 м, В = 0,5 Тл, Ip = 4…6 кА, <nе> = 5×10 18 м -3 , Te = 120 еВ) ДПВІ складається з 20 кеВ інжектора Xe + (або Cs + ) пучка і мультиколекторного детектора (МКД) вторинних Хе 2+ (або Cs 2+ ) іонів, які виходять з плазми уздовж траєкторії первинного пучка. Описуються зміни і поліпшення детекторной системи ДПВІ на токамацi ISTTOK. Можливості нової детекторної системи ілюструються недавніми результатами досліджень МГД-активності і поляризації плазми. Розглядаються також розробка багатоканального мультищілинного 90 o циліндричного аналізатора енергії для вимірювань потенціалу плазми та його флуктуацій і новий підхід використання ДПВІ для контролю вертикального положення плазми в режимі реального часу.