A new control unit for probing ion beam forming in HIBP diagnostic systems
This paper describes the new version of electronic control unit for ion beam forming in the Heavy Ion Beam Probing (HIBP) diagnostics. This improved unit was developed, manufactured, installed and tested on HIBP system for Uragan-2M torsatron. Some new schematic solutions that are implemented in t...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/115470 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A new control unit for probing ion beam forming in HIBP diagnostic systems / A.I. Zhezhera, A.A. Chmyga, G.N. Deshko, A.S. Kozachek, A.D. Komarov, L.I. Krupnik, S.M. Khrebtov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 310-313. — Бібліогр.: 2 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115470 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1154702017-04-06T03:02:32Z A new control unit for probing ion beam forming in HIBP diagnostic systems Zhezhera, A.I. Chmyga, A.A. Deshko, G.N. Kozachek, A.S. Komarov, A.D. Krupnik, L.I. Khrebtov, S.M. Plasma diagnostics This paper describes the new version of electronic control unit for ion beam forming in the Heavy Ion Beam Probing (HIBP) diagnostics. This improved unit was developed, manufactured, installed and tested on HIBP system for Uragan-2M torsatron. Some new schematic solutions that are implemented in this unit were created as the result of long-term work with various types of injector power supplies and their control systems, installed on HIBP diagnostics for different fusion devices. The new advanced and highly efficient electronic control block has been constructed. It provides all the necessary functions for adjusting the parameters of the ion beam as well as handy and stable operation of the injector in the experiments on Uragan-2M torsatron. Oписывается новая версия блока управления формированием ионного пучка для диагностики зондирования плазмы пучком тяжёлых ионов (ЗППТИ). Этот улучшенный блок был разработан, изготовлен, установлен и протестирован на системе ЗППТИ для торсатрона Ураган-2М. В этой системе были реализованы некоторые новые схемные решения, которые были созданы на основе длительной работы с различными типами блоков питания инжекторов и их систем управления ЗППТИ для различных установок по изучению управляемого термоядерного синтеза. В результате был создан усовершенствованный тип электронного блока управления c высоким коэффициентом полезного действия. Он обеспечивает все необходимые функции как для настройки параметров ионного пучка, так и для удобной и стабильной работы инжектора в экспериментах на торсатроне Ураган-2М. Описується нова версія блоку керування формуванням іонного пучка для діагностики за допомогою зондування плазми пучком важких іонів (ЗППВІ). Цей електронний блок був розроблений, виготовлений, встановлений і протестований на системі ЗППВІ для торсатрону Ураган-2М. У цій системі були реалізовані деякі нові схемні рішення, які створені на основі тривалої роботи з різними типами блоків живлення інжекторів та їх систем керування ЗППВІ для різних установок з вивчення керованого термоядерного синтезу. У результаті був створений вдосконалений тип електронного блоку управління з високим коефіцієнтом корисної дії. Він забезпечує всі необхідні функції як для настройки параметрів іонного пучка, так і для зручної і стабільної роботи інжектора в експериментах на торсатроні Ураган-2М. 2016 Article A new control unit for probing ion beam forming in HIBP diagnostic systems / A.I. Zhezhera, A.A. Chmyga, G.N. Deshko, A.S. Kozachek, A.D. Komarov, L.I. Krupnik, S.M. Khrebtov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 310-313. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 52.70.Nc. http://dspace.nbuv.gov.ua/handle/123456789/115470 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Plasma diagnostics Plasma diagnostics |
spellingShingle |
Plasma diagnostics Plasma diagnostics Zhezhera, A.I. Chmyga, A.A. Deshko, G.N. Kozachek, A.S. Komarov, A.D. Krupnik, L.I. Khrebtov, S.M. A new control unit for probing ion beam forming in HIBP diagnostic systems Вопросы атомной науки и техники |
description |
This paper describes the new version of electronic control unit for ion beam forming in the Heavy Ion Beam
Probing (HIBP) diagnostics. This improved unit was developed, manufactured, installed and tested on HIBP system
for Uragan-2M torsatron. Some new schematic solutions that are implemented in this unit were created as the result
of long-term work with various types of injector power supplies and their control systems, installed on HIBP
diagnostics for different fusion devices. The new advanced and highly efficient electronic control block has been
constructed. It provides all the necessary functions for adjusting the parameters of the ion beam as well as handy and
stable operation of the injector in the experiments on Uragan-2M torsatron. |
format |
Article |
author |
Zhezhera, A.I. Chmyga, A.A. Deshko, G.N. Kozachek, A.S. Komarov, A.D. Krupnik, L.I. Khrebtov, S.M. |
author_facet |
Zhezhera, A.I. Chmyga, A.A. Deshko, G.N. Kozachek, A.S. Komarov, A.D. Krupnik, L.I. Khrebtov, S.M. |
author_sort |
Zhezhera, A.I. |
title |
A new control unit for probing ion beam forming in HIBP diagnostic systems |
title_short |
A new control unit for probing ion beam forming in HIBP diagnostic systems |
title_full |
A new control unit for probing ion beam forming in HIBP diagnostic systems |
title_fullStr |
A new control unit for probing ion beam forming in HIBP diagnostic systems |
title_full_unstemmed |
A new control unit for probing ion beam forming in HIBP diagnostic systems |
title_sort |
new control unit for probing ion beam forming in hibp diagnostic systems |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Plasma diagnostics |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115470 |
citation_txt |
A new control unit for probing ion beam forming in HIBP diagnostic systems / A.I. Zhezhera, A.A. Chmyga, G.N. Deshko, A.S. Kozachek, A.D. Komarov, L.I. Krupnik,
S.M. Khrebtov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 310-313. — Бібліогр.: 2 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT zhezheraai anewcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT chmygaaa anewcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT deshkogn anewcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT kozachekas anewcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT komarovad anewcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT krupnikli anewcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT khrebtovsm anewcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT zhezheraai newcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT chmygaaa newcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT deshkogn newcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT kozachekas newcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT komarovad newcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT krupnikli newcontrolunitforprobingionbeamforminginhibpdiagnosticsystems AT khrebtovsm newcontrolunitforprobingionbeamforminginhibpdiagnosticsystems |
first_indexed |
2025-07-08T08:49:52Z |
last_indexed |
2025-07-08T08:49:52Z |
_version_ |
1837068027577761792 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
310 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 310-313.
A NEW CONTROL UNIT FOR PROBING ION BEAM FORMING
IN HIBP DIAGNOSTIC SYSTEMS
A.I. Zhezhera, A.A. Chmyga, G.N. Deshko, A.S. Kozachek, A.D. Komarov, L.I. Krupnik,
S.M. Khrebtov
Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine
This paper describes the new version of electronic control unit for ion beam forming in the Heavy Ion Beam
Probing (HIBP) diagnostics. This improved unit was developed, manufactured, installed and tested on HIBP system
for Uragan-2M torsatron. Some new schematic solutions that are implemented in this unit were created as the result
of long-term work with various types of injector power supplies and their control systems, installed on HIBP
diagnostics for different fusion devices. The new advanced and highly efficient electronic control block has been
constructed. It provides all the necessary functions for adjusting the parameters of the ion beam as well as handy and
stable operation of the injector in the experiments on Uragan-2M torsatron.
PACS: 52.70.Nc.
INTRODUCTION
A typical HIBP injector system is placed at high
electrical potential of the accelerating tube. This
circumstance requires the high voltage galvanic
insulation of power source and modules that control and
measure the injector system parameters. The most
practical solution for powering the injector system is to
place the charged batteries along with control system in
electrostatic screen at high voltage potential. For
controlling and measuring the injector parameters the
insulated fiber-optical cables should be used.
During its operation, the solid-state thermo-emitter
typically requires from 60 to 150 W of heating power
[1]. Such wide power range is necessary in order to
obtain high values of the primary ion current
(50…350 µA). The second reason is decreasing of ion
emission caused by depletion of the alkaline (in our case
Cs) atoms in the emitter material. The general idea of
this work was to design, create and test the compact,
reliable and easily maintained control block of the
injector with highly efficient power conversion and low
standby power consumption.
HIBP INJECTOR CONTROL UNIT
ON URAGAN-2M
General view of the power supply system for the
injector and the accelerating tube of HIBP diagnostics
on U2-M torsatron are shown on Fig. 1 [2]. The whole
injector power and control units are placed in a metal
electrostatic screen on the insulated support. It prevents
corona discharge as the entire system is under high
accelerator voltage. The schematics of the installed
injector system and accelerating tube are illustrated on
Fig. 2. The extractor electrode in the injector block
together with the first three accelerating tube rings
forms the 3-electrode electrostatic focusing system.
The injector control box provides the full remote
operation of the primary beam injector. The main
advantages of the new control block are its possibilities
to independently control and measure the emitter
heating power, extracting and focusing voltages and HV
output currents, the battery voltage and current
consumption.
Fig. 1. 1 – Injector control block; 2 – Focusing power
supply; 3 – Extracting power supply; 4 – Set of
batteries; 5 – Accelerator high voltage power supply,
6 – Electrostatic screen for the emitter-extractor unit
Fig. 2. Schematics of the injector system and
accelerating tube
Independent regulation of the extracting and
focusing voltages gives the ability to vary focal length
of primary probing beam without changing its intensity.
The same beam current and focus distance could be
archived using different emitter heating powers. This
extremely important feature provides both good spatial
resolution and large secondary beam current in the
experiments. Inability to adjust the parameters of
primary beam makes the problem of plasma density
ISSN 1562-6016. ВАНТ. 2016. №6(106) 311
profile reconstruction from the secondary beam signal
intensity almost irresolvable.
The method of beam profile measurements by using
new control unit system for different injector
parameters, as well as preliminary obtained signals are
shown on Fig. 3.
For scanning the primary beam we used 2 kV 50 Hz
AC transformer. Its output voltage is applied to the
bottom α1 (vertical) electrostatic deflecting plate. The
primary beam profile signals were registered by 2 sets
of wire grid detectors, #1 (with the distance between
wires is 30 mm) and #2 (35 mm). As the electric field of
deflecting plates α1 caused some beam distortion, the
beam diameters were calculated as the mean of beam
full width at half maximum (FWHM) from both wires
of each grid detectors.
Fig. 3. Beam profile measurements using the new
injector control block
The electrical parts and the printed circuit boards
(PCB) of the control unit are mounted in the small
single module, which controls all functionality of the
ion injector (Fig. 4). The input voltage range of the
module is 10…15 V, as the battery voltage decreases
during its discharge. This unit has a battery protection
circuit that turns off the device when the battery is
deeply discharged.
The filament of a thermo-ionic emitter is heated by
the switching mode power supply. It is based on pulse
width modulated (PWM) synchronous buck converter
and allows controlling the output current and voltage
(0…20 A, 0…10 V). A typical tungsten filament
resistance is 0.3…0.5 Ω, depending on its temperature
and specific filament type. Accordingly, the direct input
voltage from the battery to the buck converter
(11…13 V) is enough to provide the full range of
necessary heating power (60…150 W). The high
switching frequency of the converter (~100 kHz) allows
to use the low-inductance (10 µH) and small-sized
output choke to provide low ripples of output current
and voltage. The output power stage on IRF1104
MOSFETs with very low on-state resistance (9 mΩ) is
controlled by the low and high side driver IC (IR2184).
It ensures low voltage drop at output currents up to
20 A. Measurement and stabilization of the output
current is made by the Hall-effect LCA-050 current
sensor IC. A similar sensor measures the current
consumption from the battery. Regulation and
stabilization of the output current and voltage is
controlled by the PWM IC (TL494).
To power the external HV "Glassman" extractor and
focusing power supplies, another isolated +36 V push-
pull step-up converter is used, based on the same type
PWM controller IC (TL494). It is located together with
the filament converter on the same single power circuit
board (Fig. 5). Its maximum output power is about
50 W.
To control and to measure the output parameters of
the heating unit as well as the high-voltage power
supplies parameters the ATMEL, ATMEGA32
microcontroller is used. For its operation, the program
that provides the whole cycle of data acquisition and
control algorithm was written and uploaded. Therefore,
the digital connection and control packets transmission
from low voltage side (PC USB port and USB to optical
converter) to microcontroller is done by universal
asynchronous protocol interface via two single mode
optical fibers with ST connectors. In turn, the
microcontroller is connected via SPI internal interface
to 2 units of 12 bit 2-channel DAC IC (MCP4822) and
one 12 bit 8-channel ADC IC (MCP3208). To match the
levels of output and input voltages with the control and
measurement channels the set of TL074 operational
amplifiers are used. All input and output circuit
channels of the injector control block are bypassed with
quick suppressors protecting the device against
overvoltage. All these components are mounted on the
second PCB (see Fig. 5).
Fig. 4. New injector control block without top cover
Fig. 5. Layout of the main components in the injector
control block. Power board (a), control board (b)
a
b
312 ISSN 1562-6016. ВАНТ. 2016. №6(106)
As the source of energy the set of lead-acid batteries
are used. Capacity of these batteries has been chosen
based on the time required for continuous diagnostic
operation during the whole experimental day.
In our case, the power bank was made of 10 sealed
lead-acid AGM (12 V, 7 Ah) batteries, connected in
parallel. During its operation, the injector control unit
continuously monitors battery voltage and consumed
current. Under ideal conditions, overall capacity of
power bank should be 70 Ah, however the actual
measured batteries capacity is always less than that.
This is partly due to the effect of "aging" and sulfating
of the batteries plates that happens during long
downtimes between experimental campaigns at the
U2-M torsatron.
In contrast to many other facilities with magnetic
plasma confinement, during the operation of
Uragan-2M torsatron, the plasma shots come with quite
high repetition rate. The typical time between shots is
about one minute. Therefore, due to thermal inertia of
the heating filament and solid-state thermionic emitter
in the injector, the power supply heating system have to
operate continuously at a high output current values
throughout most part of the experimental time during
operational days. The measured parameters of the
injector during one of the experimental day are
illustrated on Fig. 6.
Fig. 6. Injector power supply block efficiency
measurement and heating power temporal behavior
The total calculated efficiency of the injector control
block during one of the experimental days is about
84 %. The idle current of the unit (about 1 A) is mostly
caused by 12 to 36 V DC-DC converter, which is
connected to secondary extractor and focusing HV
power supplies (“Glassman”) and control board self
current consumption. On the cold start-up, the thermal
equilibrium of the injector block is reached after
12 minutes, even if the filament current is raised up to
the necessary operating values (10…15 A) for as long
as 90 seconds by the software.
INJECTORS CONTROL SYSTEMS FOR
THE DUO-HIBP DIAGNOSTICS ON TJ-II
STELLARATOR
Fig. 7. Exterior view of the injector control and power
supply systems for the HIBP1 and HIBP2 diagnostics on
the TJ-II stellarator
On TJ-II stellarator it is impossible to place the
HIBP1 and HIBP2 injectors control systems near
accelerating tubes. Therefore, they are located together
in the HV safety cage equipped with the door for
maintenance (Fig. 7). Connections with the accelerating
tubes are made with long cables with HV insulation.
All elements of each HIBPs injector control and
power supply systems are placed in electrostatic shield
boxes on HV insulators.
The injector control systems circuits for the HIBP1
and HIBP2 are identical (Fig. 8).
Fig. 8. Schematics of the HIBP injector system and
acceleration tube on TJ-II stellarator
Each system includes 3 sealed lead-acid AGM 12 V
115 Ah lead-acid batteries, connected in parallel, as
power source. 12 to 220 V DC-AC 1500 W voltage
invertor is used to feed all the devices that are intended
for 220 V AC. Agilent N5744 (20 V, 38 A, 760 W)
power supply is used for filament heating.
Also, system includes “Glassman” extractor and
focusing HV power supplies (-10 kV, 1.5 mA),
frequency modulation fiber-optical analog input and
output modules, twisted pair to fiber-optical Ethernet
LAN convertor and some other auxiliary equipment.
ISSN 1562-6016. ВАНТ. 2016. №6(106) 313
All systems are controlled through a number of
fiber-optical cables from low voltage side.
The HIBPs TJ-II injector control systems are based
on the commercial power supplies, converters etc. This
circumstance as well as the scheme, used for the injector
power control, has some disadvantages. It is quite
expensive and it caused some problems during
operation. Since heating filament must be fed with low
voltage (below 10 V) but high current ratings
(10…15 A), this fact leads to high power losses in
double voltage conversion (12 to 220 V and 220 to
0…10 V). Also it results in the high idle current
consumption from the batteries (~9 A). All these
negative factors highly reduce the time of continuous
operation.
CONCLUSIONS
The new advanced version of electronic control unit
for ion beam forming was developed, manufactured,
installed and tested on HIBP system for Uragan-2M
torsatron.
The system of filament current regulation is based
on efficient synchronous buck converter with direct
supply from 12 V batteries. It leads to high overall
injector control block efficiency (up to 85 %) in the
wide range of output currents (up to 20 A) and results in
low idle current consumption (~1 A).
The new injector control block provides all the
necessary functions for adjusting the parameters of the
ion beam as well as for handy and stable operation of
the injector in the experiments on torsatron U-2M.
The control of the unit is performed by a common
USB computer port through two galvanic insulated
fiber-optical cables. The complete unit is rather small
(of the size of the standard PC power supply box). It can
be easily placed inside any types of electrostatic screens
under high voltage potential. These features make it
easy to implement the control unit of this type with
other various HIBP systems.
This work was supported by STCU grants 4703 and
P-507.
REFERENCES
1. L.I. Krupnik, A.D. Komarov, A.S. Kozachek,
A.V. Melnikov, I.S. Nedzelskiy. High-Intensity
Thermoionic Alkali Ion Sources for Plasma Diagnostics
// IEEE Transaction on Plasma Science, August 2008,
v. 36, № 4, p. 1536-1544.
2. A.I. Zhezhera, A.A. Chmyga, G.N. Deshko,
L.I. Krupnik, A.S. Kozachek, A.D. Komarov,
S.M. Khrebtov, S.M. Maznichenko, Yu.I. Tashchev,
G.G. Lesnyakov, V.E. Moiseenko, I.K. Tarasov,
S.V. Perfilov. The First Operation of the Heavy Ion
Beam Probing Diagnostic (HIBP) on the URAGAN-2M
Torsatron //Problems of Atomic Science and
Technology. 2015, № 1, р, 276-279.
Article received 30.09.2016
НОВЫЙ БЛОК УПРАВЛЕНИЯ ДЛЯ ФОРМИРОВАНИЯ ЗОНДИРУЮЩЕГО ИОННОГО
ПУЧКА В ДИАГНОСТИЧЕСКИХ СИСТЕМАХ ЗЗПТИ
А.И. Жежера, А.А. Чмыга, Г.Н. Дешко, А.С. Козачек, А.Д. Комаров, Л.И. Крупник, С.М. Хребтов
Oписывается новая версия блока управления формированием ионного пучка для диагностики
зондирования плазмы пучком тяжёлых ионов (ЗППТИ). Этот улучшенный блок был разработан, изготовлен,
установлен и протестирован на системе ЗППТИ для торсатрона Ураган-2М. В этой системе были
реализованы некоторые новые схемные решения, которые были созданы на основе длительной работы с
различными типами блоков питания инжекторов и их систем управления ЗППТИ для различных установок
по изучению управляемого термоядерного синтеза. В результате был создан усовершенствованный тип
электронного блока управления c высоким коэффициентом полезного действия. Он обеспечивает все
необходимые функции как для настройки параметров ионного пучка, так и для удобной и стабильной
работы инжектора в экспериментах на торсатроне Ураган-2М.
НОВИЙ БЛОК КЕРУВАННЯ ДЛЯ ФОРМУВАННЯ ЗОНДУЮЧОГО ІОННОГО ПУЧКА
У ДІАГНОСТИЧНИХ СИСТЕМАХ ЗППВІ
О.І. Жежера, О.О. Чмига, Г.М. Дешко, О.С. Козачок, О.Д. Комаров, Л.І. Крупнік, С.М. Хребтов
Описується нова версія блоку керування формуванням іонного пучка для діагностики за допомогою
зондування плазми пучком важких іонів (ЗППВІ). Цей електронний блок був розроблений, виготовлений,
встановлений і протестований на системі ЗППВІ для торсатрону Ураган-2М. У цій системі були реалізовані
деякі нові схемні рішення, які створені на основі тривалої роботи з різними типами блоків живлення
інжекторів та їх систем керування ЗППВІ для різних установок з вивчення керованого термоядерного
синтезу. У результаті був створений вдосконалений тип електронного блоку управління з високим
коефіцієнтом корисної дії. Він забезпечує всі необхідні функції як для настройки параметрів іонного пучка,
так і для зручної і стабільної роботи інжектора в експериментах на торсатроні Ураган-2М.
|