Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off

For the past decades the microwave radiometry is a routinely used diagnostics to obtain the information on temporal evolution and radial profile of the bulk electron temperature at Uragan-3M torsatron plasma experiments. However, in the case of low plasma density operation we observe the high leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Zamanov, N.V., Pavlichenko, R.O., Kulaga, A.E.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/115472
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off / N.V. Zamanov, R.O. Pavlichenko, A.E. Kulaga // Вопросы атомной науки и техники. — 2016. — № 6. — С. 317-320. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-115472
record_format dspace
spelling irk-123456789-1154722017-04-06T03:02:28Z Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off Zamanov, N.V. Pavlichenko, R.O. Kulaga, A.E. Plasma diagnostics For the past decades the microwave radiometry is a routinely used diagnostics to obtain the information on temporal evolution and radial profile of the bulk electron temperature at Uragan-3M torsatron plasma experiments. However, in the case of low plasma density operation we observe the high level of electron cyclotron emission at the frequencies that match the second and third harmonics of the extraordinary mode after RF heating pulse off. This effect could be explained with the production of the suprathermal electrons. Study of the behavior suprathermal electrons is of great importance because: (a) suprathermal electrons significantly distort or make it impossible to measure the thermal electron temperature; (b) such electrons influence the ionization process, the excitation of the plasma ions and may lead to the occurrence of several plasma instabilities. The present work describes the results of experimental studies of the behavior of the emission after turning off the RF heat pulse В течение последних десятилетий микроволновая радиометрия  обычно используемая диагностика для получения информации о временной эволюции и радиальном профиле температуры электронов во время плазменных экспериментов на торсатроне Ураган-3М. Тем не менее, в случае низкоплотной плазмы при помощи этой диагностики наблюдается появление излучения после отключения импульса высокочастотного нагрева. Этот эффект можно объяснить существованием надтепловых электронов. Изучение поведения надтепловых электронов важно, поскольку: (а) надтепловые электроны существенно искажают или делают невозможным измерения электронной температуры; (б) такие электроны влияют на процессы ионизации, возбуждения ионов плазмы и могут приводить к возникновению целого ряда неустойчивостей. Описываются результаты экспериментальных исследований поведения излучения после выключения импульса ВЧ-нагрева. Протягом останніх десятиліть мікрохвильова радіометрія є діагностикою, що зазвичай використовується для отримання інформації про часову еволюцію та радіальний профіль температури електронів під час плазмових експериментів на торсатроні Ураган-3М. Тим не менш, у випадку низькощільної плазми за допомогою цієї діагностики спостерігається поява випромінювання після відключення імпульсу високочастотного нагріву. Цей ефект можна пояснити існуванням надтеплових електронів. Вивчення поведінки надтеплових електронів важливо, оскільки: (а) надтеплові електрони істотно спотворюють або унеможливлюють вимірювання електронної температури; (б) такі електрони впливають на процеси іонізації, збудження іонів плазми і можуть призводити до виникнення цілого ряду нестійкостей. Описуються результати експериментальних досліджень поведінки випромінювання після вимкнення імпульсу ВЧ-нагріву. 2016 Article Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off / N.V. Zamanov, R.O. Pavlichenko, A.E. Kulaga // Вопросы атомной науки и техники. — 2016. — № 6. — С. 317-320. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.55.Hc, 52.70.Gw, 52.35.Hr, 52.25.Os, 42.60.Jf, 42.15.Eq http://dspace.nbuv.gov.ua/handle/123456789/115472 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma diagnostics
Plasma diagnostics
spellingShingle Plasma diagnostics
Plasma diagnostics
Zamanov, N.V.
Pavlichenko, R.O.
Kulaga, A.E.
Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off
Вопросы атомной науки и техники
description For the past decades the microwave radiometry is a routinely used diagnostics to obtain the information on temporal evolution and radial profile of the bulk electron temperature at Uragan-3M torsatron plasma experiments. However, in the case of low plasma density operation we observe the high level of electron cyclotron emission at the frequencies that match the second and third harmonics of the extraordinary mode after RF heating pulse off. This effect could be explained with the production of the suprathermal electrons. Study of the behavior suprathermal electrons is of great importance because: (a) suprathermal electrons significantly distort or make it impossible to measure the thermal electron temperature; (b) such electrons influence the ionization process, the excitation of the plasma ions and may lead to the occurrence of several plasma instabilities. The present work describes the results of experimental studies of the behavior of the emission after turning off the RF heat pulse
format Article
author Zamanov, N.V.
Pavlichenko, R.O.
Kulaga, A.E.
author_facet Zamanov, N.V.
Pavlichenko, R.O.
Kulaga, A.E.
author_sort Zamanov, N.V.
title Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off
title_short Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off
title_full Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off
title_fullStr Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off
title_full_unstemmed Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off
title_sort behavior of suprathermal electrons at the uragan-3m torsatron after rf heating off
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2016
topic_facet Plasma diagnostics
url http://dspace.nbuv.gov.ua/handle/123456789/115472
citation_txt Behavior of suprathermal electrons at the Uragan-3M torsatron after RF heating off / N.V. Zamanov, R.O. Pavlichenko, A.E. Kulaga // Вопросы атомной науки и техники. — 2016. — № 6. — С. 317-320. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT zamanovnv behaviorofsuprathermalelectronsattheuragan3mtorsatronafterrfheatingoff
AT pavlichenkoro behaviorofsuprathermalelectronsattheuragan3mtorsatronafterrfheatingoff
AT kulagaae behaviorofsuprathermalelectronsattheuragan3mtorsatronafterrfheatingoff
first_indexed 2025-07-08T08:50:04Z
last_indexed 2025-07-08T08:50:04Z
_version_ 1837068038523846656
fulltext ISSN 1562-6016. ВАНТ. 2016. №6(106) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 317-320. 317 BEHAVIOR OF SUPRATHERMAL ELECTRONS AT THE URAGAN-3M TORSATRON AFTER RF HEATING OFF N.V. Zamanov, R.O. Pavlichenko, A.E. Kulaga Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine E-mail: zamanov@kipt.kharkov.ua For the past decades the microwave radiometry is a routinely used diagnostics to obtain the information on temporal evolution and radial profile of the bulk electron temperature at Uragan-3M torsatron plasma experiments. However, in the case of low plasma density operation we observe the high level of electron cyclotron emission at the frequencies that match the second and third harmonics of the extraordinary mode after RF heating pulse off. This effect could be explained with the production of the suprathermal electrons. Study of the behavior suprathermal electrons is of great importance because: (a) suprathermal electrons significantly distort or make it impossible to measure the thermal electron temperature; (b) such electrons influence the ionization process, the excitation of the plasma ions and may lead to the occurrence of several plasma instabilities. The present work describes the results of experimental studies of the behavior of the emission after turning off the RF heat pulse. PACS: 52.55.Hc, 52.70.Gw, 52.35.Hr, 52.25.Os, 42.60.Jf, 42.15.Eq INTRODUCTION The presence of ECE afterglow which was obtained at the second harmonic 2ωce under certain operating conditions torsatron Uragan-3M (U-3M) is known for a long time [1]. However, other groups of diagnostics, installed at U-3M, could not observed such phenomena as seen by ECE diagnostics signals, thereby hampering the interpretation of this. Installation of a new radiometer, to receive radiation at frequencies that correspond to the third harmonic 3ωce, helped to confirm the existence of afterglow effect (Fig. 1). The time trace of the received radiation is identical to the standard radiometer signal (2ωce). It has been proposed the presence of suprathermal electron beam. The question of occurrence of suprathermal electrons in the U-3M and the impact such electrons on the modification of the distribution function, and hence, impact on the definition of "thermal" electrons temperature Te arose [2-4]. This work includes the first results of a detailed study of the behavior of suprathermal electron radiation. EXPERIMENTAL CONDITIONS Uragan-3M is a l=3, m=9 small size torsatron with major radius, R=1 m average plasma radius apl=0.12 m and toroidal magnetic field B0=0.72 T. The whole magnetic system is enclosed into large five meters diameter (volume of V=70 m 3 ) vacuum tank, so that an open natural helical divertor is realized. Current to the magnetic field coils is supplied in a pulsed mode. Magnetic field pulse duration was about 5s. Wherein, pulse has the following parameters: pulse raise time, pulse fall times are of the order of ~1 s, pulse width ~3s with at least flat top pulse time of ~2 s. Fig. 1. Electron cyclotron emission at the frequencies that match the second and third harmonics of the extraordinary mode after RF heating pulse off Producing and plasma heating was carried out by RF method, wherein the power is introduced into the confinement volume at the frequencies (8.6...8.8) MHz, close to the Alfvén resonance frequency ω ≤ ωci (on a stationary part of the magnetic field pulse). The pulse duration of the RF power was varied in the range (50…70) ms. Input RF power in confinement volume was carried out using two antennas located on the part of a low magnetic field. In the presented experiments, the value of the input power reached 140 kW. The working gas is hydrogen. ECE RADIOMETRY SYSTEM Electron cyclotron emission (ECE) diagnostics is a standard tool that routinely used for electron temperature profile measurement of high temperature Te plasmas at U-3M. The advantage of this method lies in ∙ 318 ISSN 1562-6016. ВАНТ. 2016. №6(106) the fact that in inhomogeneous magnetic field, region of emission is close to the resonant surfaces (Fig. 2) and the local temperature can be calculated with good spatial resolution. Fig. 2. Radial distribution of the first three harmonics of the electron cyclotron frequencies for the central magnetic field 0.72 T, operational frequencies for the second and third harmonics depicted as filled circles (upper); and Poincaré plot of the corresponding poloidal cross-section U-3M magnetic fluxes (lower) At the U-3M ECE diagnostics utilize the emission from the plasma at frequencies, which corresponds to the second 2ωce and the third 3ωce harmonics X-mode extraordinary wave. Conical horn antenna is oriented perpendicular to the magnetic field lines and is located on the part of a low magnetic field [5]. The frequency range (33…37) GHz for 2ωce and (57…75) GHz for 3ωce was chosen according to the value of the toroidal magnetic field of (0.68…0.72) T. Intensity emission of thermal electron depends on the density, temperature and the average optical depth (τavg) of the plasma: I(ECE)∝ne Te τavg. Assuming parabolic density profile, with an average plasma density =1.2·10 18 m -3 , optical depth of the plasma τavg~0.4. On this basis, it is possible to estimate value of the electron temperature in the plasma column center: Te0~0.5 keV. RADIATION OF THE SUPRATHERMAL ELECTRONS AT THE URAGAN-3M TORSATRON AFTER RF HEATING OFF During previous experiments afterglow effect (see Fig. 1.) suggest that main driver of this phenomena is electric field [6], which produced by time varied magnetic field during plasma discharge. The operational time was extended to full time of the major magnetic pulse (5 s). + Fig. 3. Maximum intensity of the ECE observed on the rising edge of the magnetic field pulse It was found that maximum intensity of the ECE observed at the rising edge of the magnetic field pulse (Fig. 3). For this condition electrons go over to a state of continuous acceleration since their dynamic friction force is less than the force exerted by the electric field, arising due to temporal changes of the magnetic field. In the case of low operating pressure pH2<3·10 -6 Torr the level of radiation intensity increases and registered during full magnetic field pulse length. With an operating pressure close to pH2=1.04·10 -5 Torr intensity bursts are observed only at the magnetic field ramp up, ramp down phases, and a short period after the RF-pulse off (supplied at the stationary part of the magnetic field). Fig. 4. Time dependences of the hydrogen pressure in the vacuum chamber during and after RF-pulse in the RF heating mode The temporal behavior of the working gas pressure let us utilize the model which imply that occurrence of the suprathermal electrons, could be described as follows. At the active phase of the plasma discharge (during RF-pulse) the pressure of the working gas are falls and then inertially recovers to the initial level [7] (Fig. 4) The pressure (electron density) cross RF-pulse ∙ ISSN 1562-6016. ВАНТ. 2016. №6(106) 319 threshold level which is sufficient for initiation of the electrons to accelerate and its emission is clearly observed. Fig. 5. Experiment of the shift the RF heating pulse to the beginning of decay stage. Here are shown signals of different groups of diagnostics To investigate of this dependence on varied magnetic field we deliberately shift the RF heating pulse startup time to the beginning of decay stage (Fig. 5). Thus the parallel electric field will be significantly increased, which led to a stronger flow suprathermal electrons and will finally to significant increasing in the afterglow radiation, observed by ECE diagnostic. Moreover finally it was found a clear correlation in the behavior of signals from ECE detectors (36.5…75) GHz, 140 GHz interferometer (line electron plasma density, ), soft and hard X-ray (SXR+HXR) emission, spectroscopy Hα and plasma current Itor (Rogowski coil). The temporal traces of the different diagnostics show clear correlated peaks which could attribute as the impact of the suprathermal electrons on construction elements with subsequent ionization ejected impurities. The effect of working gas ionization by the suprathermal electrons has been registered as well (Fig. 6). Fig. 6. Detailed analysis of the data leads to the conclusion about the interaction of the suprathermal electron beam with elements of construction (red dot); and of the ionization of the working gas (green dot) CONCLUSIONS In torsatron U-3M continued detailed experimental study of driving of the suprathermal electrons after turn- off RF-pulse, for the low plasma density case =(0.5…1.2)·10 18 m -3 and different initial pressure values pH 2 =(0.85…1)·10 -5 Torr, shows clear and simultaneous response at the main plasma parameters. The main driver for the suprathermal electrons appearing is the time variation of the local magnetic field, which led to increasing of the accelerating electric field. This phenomenon indicates that the suprathermal electrons in torsatron U-3M can play an active role in the breakdown of the working gas in the containment region (inside the helical coils). It shown that the presence of suprathermal electrons may lead to their interaction with the elements of construction torsatron and additional ionization. Finally we have to point out about the drawback of such operational scenario. It is almost impossible to avoid that undesirable high level HXR radiation which is attributed with interaction of the high energetic particles with inner vessel mechanical components. To assess the value of ECE depending on the prehistory of the rise of the magnetic field, further detailed studies of suprathermal electrons will be held in torsatron U-3M on the magnetic field phase of growth. ACKNOWLEDGEMENTS The authors thank the technical staff torsatron U-3M, ensuring reliable operation of the device. Also individually thank to V.G. Konovalov, M.N. Makhov, Yu.K. Mironov, V.K. Pashnev, A.A. Petrushenya, V.S. Romanov, A.N. Shapoval, E.L. Sorokovoy, I.K. Tarasov for providing corresponding experimental data and I.M. Pankratov for fruitful discussions. 320 ISSN 1562-6016. ВАНТ. 2016. №6(106) REFERENCES 1. V.S. Voitsenya et al. Progress in stellarator research in Kharkov IPP // Physica Scripta. 2014, v. T161, p. 014009. 2. T. Kudyakov et al. Spatially and temporally resolved measurements of runaway electrons in the TEXTOR tokamak // Nuclear Fusion. 2008, v. 48, p. 122002. 3. P. Helander et al. Runaway acceleration during magnetic reconnection in tokamaks // Plasma Physics and Controlled Fusion. 2002, v. 44, p. B247-B262. 4. V.V. Parail et al. Diffusion of runaway electrons in a tokamak // Nuclear Fusion. 1978, v. 18, p. 9371982. 5. R.O. Pavlichenko et al. Peculiarities of the radiometric measurements on Uragan-3M torsatron for RF heated plasma // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2011, № 1, p. 191-193. 6. R.O. Pavlichenko. Influence of suprathermal electrons on ECE measurements in the URAGAN-3M torsatron // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2015, № 1, p. 293-296. 7. V.K. Pashnev, A.A. Petrushenya et al. Hydrogen recycling during rf plasma heating in the U-3M torsatron // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2014, № 6, p. 272-274. Article received 26.10.2016 ПОВЕДЕНИЕ ИЗЛУЧЕНИЯ НАДТЕПЛОВЫХ ЭЛЕКТРОНОВ В ТОРСАТРОНЕ УРАГАН-3М ПОСЛЕ ВЫКЛЮЧЕНИЯ НАГРЕВА Н.В. Заманов, Р.О. Павличенко, А.Е. Кулага В течение последних десятилетий микроволновая радиометрия  обычно используемая диагностика для получения информации о временной эволюции и радиальном профиле температуры электронов во время плазменных экспериментов на торсатроне Ураган-3М. Тем не менее, в случае низкоплотной плазмы при помощи этой диагностики наблюдается появление излучения после отключения импульса высокочастотного нагрева. Этот эффект можно объяснить существованием надтепловых электронов. Изучение поведения надтепловых электронов важно, поскольку: (а) надтепловые электроны существенно искажают или делают невозможным измерения электронной температуры; (б) такие электроны влияют на процессы ионизации, возбуждения ионов плазмы и могут приводить к возникновению целого ряда неустойчивостей. Описываются результаты экспериментальных исследований поведения излучения после выключения импульса ВЧ-нагрева. ПОВЕДІНКА ВИПРОМІНЮВАННЯ НАДТЕПЛОВИХ ЕЛЕКТРОНІВ У ТОРСАТРОНІ УРАГАН-3М ПІСЛЯ ВИМКНЕННЯ НАГРІВУ М.В. Заманов, Р.О. Павліченко, А.Є. Кулага Протягом останніх десятиліть мікрохвильова радіометрія є діагностикою, що зазвичай використовується для отримання інформації про часову еволюцію та радіальний профіль температури електронів під час плазмових експериментів на торсатроні Ураган-3М. Тим не менш, у випадку низькощільної плазми за допомогою цієї діагностики спостерігається поява випромінювання після відключення імпульсу високочастотного нагріву. Цей ефект можна пояснити існуванням надтеплових електронів. Вивчення поведінки надтеплових електронів важливо, оскільки: (а) надтеплові електрони істотно спотворюють або унеможливлюють вимірювання електронної температури; (б) такі електрони впливають на процеси іонізації, збудження іонів плазми і можуть призводити до виникнення цілого ряду нестійкостей. Описуються результати експериментальних досліджень поведінки випромінювання після вимкнення імпульсу ВЧ-нагріву.