Моделирование динамики структурированной по возрасту полициклической популяции биологических клеток на параметризированном множестве алгебраических функций

С помощью аналитического подхода и численного моделирования исследуется динамика популяции биологических клеток на основе структурированной по возрасту полициклической модели. Начально-краевая задача для уравнения переноса сводится к интегральному уравнению Вольтерры второго рода, которое решается с...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Акименко, В.В., Загородний, Ю.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2014
Schriftenreihe:Кибернетика и системный анализ
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/115812
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Моделирование динамики структурированной по возрасту полициклической популяции биологических клеток на параметризированном множестве алгебраических функций / В.В. Акименко, Ю.В. Загородний // Кибернетика и системный анализ. — 2014. — Т. 50, № 4. — С. 108-125. — Бібліогр.: 30 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:С помощью аналитического подхода и численного моделирования исследуется динамика популяции биологических клеток на основе структурированной по возрасту полициклической модели. Начально-краевая задача для уравнения переноса сводится к интегральному уравнению Вольтерры второго рода, которое решается с помощью резольвенты (представленной в виде бесконечного ряда). Для начально-краевой задачи для уравнения переноса разработана явная двухслойная разностная схема со вторым порядком аппроксимации по времени и первым порядком по возрасту, с явной рекурсивной формулой для предельного интегрального условия. Основные биологические параметры системы рассмотрены на множестве параметризованных алгебраических функций с компактной областью определения. Проблема идентификации параметров системы решена для приближенных аналитических решений задачи для фракционной клеточной биомассы хмеля, наблюдавшихся в течение трех лет. Поскольку максимальная относительная погрешность отклонения модельной функции от экспериментальных данных составила менее 11 %, можно сделать вывод, что структурированная по возрасту полициклическая модель популяции достаточно эффективна для решения прикладных задач в биологических системах.