O(1) delta part computation technique for the quadratic assignment problem
The quadratic assignment problem is rightfully considered to be one of the most challenging problems of combinatorial optimization. Since this problem is NP-hard, the use of heuristic algorithms is the only way to find in a reasonable time a solution that is close to optimal. One of the most effecti...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2015
|
Назва видання: | Системні дослідження та інформаційні технології |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/116059 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | O(1) delta part computation technique for the quadratic assignment problem / S.V. Podolsky, Yu.M. Zorin // Системні дослідження та інформаційні технології. — 2015. — № 2. — С. 112-121 . — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-116059 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1160592017-04-19T03:02:24Z O(1) delta part computation technique for the quadratic assignment problem Podolsky, S.V. Zorin, Yu.M. Математичні методи, моделі, проблеми і технології дослідження складних систем The quadratic assignment problem is rightfully considered to be one of the most challenging problems of combinatorial optimization. Since this problem is NP-hard, the use of heuristic algorithms is the only way to find in a reasonable time a solution that is close to optimal. One of the most effective heuristic algorithms is the Robust Tabu Search, which is the basis of many subsequent metaheuristic algorithms. The paper describes a novel approach to scanning the neighborhood of the current solution that allows reducing by half the number of delta values that were required to be computed with complexity O(N) in most of the heuristics for the quadratic assignment problem. Using the correlation between the old and new delta values, obtained in this work, a new formula of complexity O(1) is proposed. The results obtained leads up to 25% performance increase as compared to such well-known algorithms as the Robust Tabu Search and others based on it. The formula obtained in this paper may be successfully applied to other heuristics using a full scan of the solution neighborhood. Квадратична задача про призначення по праву вважається однією із самих складних проблем комбінаторної оптимізації. У зв’язку з цим, знайти її розв’язок, близький до оптимального, за розумний час можна тільки з використанням евристичних алгоритмів. Однією з найбільш ефективних евристик є алгоритм Robust Tabu Search, який лежить в основі багатьох наступних метаэвристических алгоритмів. У роботі описано новий підхід до сканування околиці поточного розв’язку, який дозволяє зменшити наполовину число обчислень дельта-складових, які обчислювалися зі складністю O(N) у більшості метаэвристик, що застосовуються для розв’язку квадратичної задачі про призначення. Дослідження взаємозв’язку між колишніми й новими значеннями дельта-складових, дозволило отримати нову формулу складності O(1) для їхнього обчислення, що приводить до збільшення до 25% швидкодії алгоритму в порівнянні Robust Tabu Search у випадку задач великої розмірності. Формула, отримана в роботі, може бути успішно застосована в інших евритстиках, що використовують повне сканування околиці розв'язку. Квадратичная задача о назначениях по праву считается одной из самых сложных проблем комбинаторной оптимизации. В этой связи, найти ее решение, близкое к оптимальному, за разумное время можно только с использованием эвристических алгоритмов. Одной из наиболее эффективных эвристик является алгоритм Robust Tabu Search, который лежит в основе многих последующих метаэвристических алгоритмов. В работе описан новый подход к сканированию окрестности текущего решения, позволяю- щий уменьшить наполовину число вычислений дельта-составляющих, которые вычислялись со сложностью O(N) в большинстве метаэвристик, применяемых для решения квадратичной задачи о назначениях. Исследование взаимосвязи между прежними и новыми значениями дельта-составляющих, позволило получить новую формулу сложности O(1) для их вычисления, что приводит к увеличению до 25% быстродействия алгоритма по сравнению Robust Tabu Search в случае задач большой размерности. Формула, полученная в работе, может быть успешно применена в других эвристиках, использующих полное сканирование окрестности решения. 2015 Article O(1) delta part computation technique for the quadratic assignment problem / S.V. Podolsky, Yu.M. Zorin // Системні дослідження та інформаційні технології. — 2015. — № 2. — С. 112-121 . — Бібліогр.: 8 назв. — англ. 1681–6048 http://dspace.nbuv.gov.ua/handle/123456789/116059 004.89:004.4 en Системні дослідження та інформаційні технології Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Математичні методи, моделі, проблеми і технології дослідження складних систем Математичні методи, моделі, проблеми і технології дослідження складних систем |
spellingShingle |
Математичні методи, моделі, проблеми і технології дослідження складних систем Математичні методи, моделі, проблеми і технології дослідження складних систем Podolsky, S.V. Zorin, Yu.M. O(1) delta part computation technique for the quadratic assignment problem Системні дослідження та інформаційні технології |
description |
The quadratic assignment problem is rightfully considered to be one of the most challenging problems of combinatorial optimization. Since this problem is NP-hard, the use of heuristic algorithms is the only way to find in a reasonable time a solution that is close to optimal. One of the most effective heuristic algorithms is the Robust Tabu Search, which is the basis of many subsequent metaheuristic algorithms. The paper describes a novel approach to scanning the neighborhood of the current solution that allows reducing by half the number of delta values that were required to be computed with complexity O(N) in most of the heuristics for the quadratic assignment problem. Using the correlation between the old and new delta values, obtained in this work, a new formula of complexity O(1) is proposed. The results obtained leads up to 25% performance increase as compared to such well-known algorithms as the Robust Tabu Search and others based on it. The formula obtained in this paper may be successfully applied to other heuristics using a full scan of the solution neighborhood. |
format |
Article |
author |
Podolsky, S.V. Zorin, Yu.M. |
author_facet |
Podolsky, S.V. Zorin, Yu.M. |
author_sort |
Podolsky, S.V. |
title |
O(1) delta part computation technique for the quadratic assignment problem |
title_short |
O(1) delta part computation technique for the quadratic assignment problem |
title_full |
O(1) delta part computation technique for the quadratic assignment problem |
title_fullStr |
O(1) delta part computation technique for the quadratic assignment problem |
title_full_unstemmed |
O(1) delta part computation technique for the quadratic assignment problem |
title_sort |
o(1) delta part computation technique for the quadratic assignment problem |
publisher |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
publishDate |
2015 |
topic_facet |
Математичні методи, моделі, проблеми і технології дослідження складних систем |
url |
http://dspace.nbuv.gov.ua/handle/123456789/116059 |
citation_txt |
O(1) delta part computation technique for the quadratic assignment problem / S.V. Podolsky, Yu.M. Zorin // Системні дослідження та інформаційні технології. — 2015. — № 2. — С. 112-121 . — Бібліогр.: 8 назв. — англ. |
series |
Системні дослідження та інформаційні технології |
work_keys_str_mv |
AT podolskysv o1deltapartcomputationtechniqueforthequadraticassignmentproblem AT zorinyum o1deltapartcomputationtechniqueforthequadraticassignmentproblem |
first_indexed |
2025-07-08T09:48:18Z |
last_indexed |
2025-07-08T09:48:18Z |
_version_ |
1837071701820571648 |
fulltext |
S. Podolsky, Yu. Zorin, 2015
112 ISSN 1681–6048 System Research & Information Technologies, 2015, № 2
UDC 004.89:004.4
O(1) DELTA PART COMPUTATION TECHNIQUE
FOR THE QUADRATIC ASSIGNMENT PROBLEM
S.V. PODOLSKY, YU.M. ZORIN
The quadratic assignment problem is rightfully considered to be one of the most
challenging problems of combinatorial optimization. Since this problem is NP-hard,
the use of heuristic algorithms is the only way to find in a reasonable time a solution
that is close to optimal. One of the most effective heuristic algorithms is the Robust
Tabu Search, which is the basis of many subsequent metaheuristic algorithms. The
paper describes a novel approach to scanning the neighborhood of the current solu-
tion that allows reducing by half the number of delta values that were required to be
computed with complexity )(NO in most of the heuristics for the quadratic assign-
ment problem. Using the correlation between the old and new delta values, obtained
in this work, a new formula of complexity )1(O is proposed. The results obtained
leads up to 25% performance increase as compared to such well-known algorithms
as the Robust Tabu Search and others based on it. The formula obtained in this paper
may be successfully applied to other heuristics using a full scan of the solution
neighborhood.
INTRODUCTION
The quadratic assignment problem (QAP) was first mentioned by Koopmans and
Beckmann in 1957 [1] and still remains one of the most challenging combinato-
rial optimization problems. The problem formulation is as following. There are N
locations and N facilities. Distances between each pair of locations and flow
values, i.e. number of transportations, are provided. The goal is to assign all the
facilities to different locations so that to minimize the sum of all distances multi-
plied by the corresponding flows. This can be formulated in a form of the objec-
tive function
N
i
N
j
jiij fd
1 1
)()(min , (1)
where )(x is a facility number assigned to location with number x ; ijd is a dis-
tance between locations i and ;j )()( jif is a flow between facilities )(i and
)( j . Since the problem is NP-hard [2] there is no exact algorithm that can solve
the QAP in polynomial time. Furthermore, the travelling salesman problem (TSP)
may be seen as a special case of the QAP in the case when all the facilities are
connected via flows having a constant value into a single ring while the other
flows have zero value. Thus the QAP can be considered even more challenging
than the TSP.
The only methods that allow obtaining feasible solutions for the QAP in-
stances of size 30 and higher are heuristics. One of the most efficient heuristic
algorithm for the QAP is the Robust Tabu Search (Ro-TS) developed by Eric
O(1) delta part computation technique for the quadratic assignment problem
Системні дослідження та інформаційні технології, 2015, № 2 113
Taillard in 1991 [3], which produces high quality solutions even for very large
instances. Among other successful heuristics are genetic algorithms [4], ant sys-
tems [5] and others. Typically, predominant majority of them are based on the
same approach of the neighbor solutions representations obtained by pairwise ex-
change of elements in the solution vector.
The purpose of this study is to propose a technique of the current solution
neighborhood scanning that allows obtaining a significant performance increase
of the metaheuristic algorithm for the quadratic assignment problem solution.
BACKGROUND OF THE NEIGHBORHOOD SCANNING
The process of the neighborhood scanning described for the Ro-TS is one of the
most representative environment subject to improvement, since the Ro-TS per-
forms initial solution construction and objective function (1) evaluation only once
at the beginning of the algorithm before main iterations started. During the initial
stage, a random solution vector is generated and its cost is computed by the objec-
tive function as defined by (1). In each main iteration of the Ro-TS a move which
relies on exchange of the two elements from the current solution vector is per-
formed. A pair of elements to be exchanged is selected among all 2
NC pairs using
ij minimization criterion. Actually the selection criterion is more complicated
than just delta value minimization, but for now we omit its discussion. After the
exchange a new cost can be obtained from the previous cost by adding a ij term,
where all 2
NC values ij are computed on the initial stage of the Ro-TS, each
with the time complexity O(N), before main iterations start
))(())(( )()()()()()()()( jiijjiijiijjjjiiij ffddffdd
)].)(()()[( )()()()()()()()(
,,1
gigjjgigigjg
N
jigg
gjgi ffddffdd
It is convenient to store all computed values ij in a jagged matrix and ex-
tract them by indices i and j once the solution cost must be modified after the
elements i and j exchange performed. However, each time after the exchange of
two elements, all 2
NC values ij become unfeasible and needed to be corrected.
It is obvious, that after elements p and q are exchanged, the new pq value is
evaluated trivially as pq reflecting the reverse exchange of the same pair. For
all those ij which do not involve the two elements p and q that were exchanged
just before, i.e. }Ø{},{},{ qpji , new values *
ij can be evaluated exploiting
their old values ij with the complexity )1(O as following
))(( )()()()()()()()(
*
jqiqipjpqiqjpjpiijij ffffdddd
))(( )()()()()()()()( qjqipipjiqjqjpip ffffdddd , ., jig (2)
S. Podolsky, Yu. Zorin
ISSN 1681–6048 System Research & Information Technologies, 2015, № 2 114
However, as it was observed by Taillard [3], for those ij which involve one
of the indices p or q from the last exchange, i.e. 1},{},{ qpji all new values
*
ij must be evaluated anew with complexity )(NO by (2). This technique of
complete delta recomputation was widely used since it was introduced by Taillard
and proceeded without any improvements in further researches such as Reactive
Tabu Search [6]. Therefore it is still used in miscellaneous recent Ro-TS
implementations such as efficient heuristic for sparse matrices [7] etc. This paper
shows how to bypass this issue and evaluate with the linear time complexity only
a half of deltas that involve nodes from the last pair exchange. However, it would
be important to prove that this issue is a real performance bottleneck and needed
to be resolved.
RELEVANCE AND PERFORMANCE
As it was mentioned before, the total number of all possible exchanges equals
N
NN
CN
)1(2
. Among them there are possible pair exchanges that involve only
one of the two just exchanged elements and the total number of them equals
)2(2 N . The last number is obtained from the considerations that each of the
two elements being swapped can be exchanged with any element from the rest of
2N other distinct elements, as it shown in Fig. 1. Consequently, the total num-
ber of those ij which can be corrected with the complexity )1(O is equal to the
difference of all possible exchanges number and the total number of exchanges
being corrected with complexity :)(NO
.2
2
)1)(4(
)2(2
2
)1(
NN
N
NN
So, what is to be done is to compute only )2( N instead of )2(2 N new
delta values with complexity )(NO and the rest ones computed with .)1(O How-
ever, the main question still remains — whether this will affect iteration perform-
ance significantly? The answer was obtained after the Ro-TS open source C++
code profiled with the use of MS Visual Studio Profiling tools on Tai100a QAP
instance.
…
k
21
ji
N – 2
Fig. 1. An illustration of further exchange of one of the two exchanged elements
O(1) delta part computation technique for the quadratic assignment problem
Системні дослідження та інформаційні технології, 2015, № 2 115
As it is shown in Fig. 2, the compute_delta method which computes del-
tas anew takes over 50% of total samples, being the most expensive call, while
compute_delta_part takes only 29% of total samples to update each of oth-
er delta values with the )1(O time complexity. Therefore, we suggest that compu-
tational time per iteration can be reduced up to a quarter with the use of proposed
technique, especially on large QAP instances.
NEW O(1) DELTA PART COMPUTATION TECHNIQUE EXPLORATION
Suppose we have three elements with indices kji ,, in the solution vector and the
values jkikij ,, are already known. Our purpose is to exchange a pair of ele-
ments i and j and compute new values *** ,, jkikij afterwards. First of all let’s
consider the assignments* of the flows )()()()()()( ,, gkgjgi fff to the dis-
tances kgjgig ddd ,, (Fig. 3), where by g we denote an arbitrary element from the
rest of the other 3N elements distinct from .,, kji Though in terms of the
QAP an assignment usually means the assignment of facility to specific location,
here we imply the assignment of flow to distance caused by a pair of regular QAP
assignments. All the values jkikij ,, include the following terms, which in-
dicate the cost change caused by reassignments of flows to distances to (from)
element g after corresponding pair exchanges:
Fig. 2. A sample profiling report for the Ro-TS on Tai100a instance
*Though in terms of the QAP an assignment usually means the assignment of facility to specific loca-
tion, here we imply the assignment of flow to distance caused by a pair of regular QAP assignments.
S. Podolsky, Yu. Zorin
ISSN 1681–6048 System Research & Information Technologies, 2015, № 2 116
,)()()()()()()()( gijggjiggjjggiigij fdfdfdfd
,)()()()()()()()( gifkggkfiggkfkggifigik dddd
.)()()()()()()()( ijkggkjggkkggjjgjk fdfdfdfd
Now, let’s consider the assignments of the same three flows to the same
three distances after the elements i and j are exchanged (see Fig. 4). The new
values *** ,, jkikij that we need to compute after this exchange will contain
the following terms
,*
ijij
,)()()()()()()()(
*
gjkggkiggkkggjigik fdfdfdfd
.)()()()()()()()(
*
gikggkjggkkggijgjk fdfdfdfd
igd
gi
f
jgd
gj
f
kgd
gk
f
i
j
k
g
N–3
Fig. 3. Assignments of the flows to the distances before any exchanges
Fig. 4. Assignments of the flows to the distances after i and j exchanges
igd
gi
f
jgd
gj
f
kgd
gk
f
i
j
k
g
N–3
O(1) delta part computation technique for the quadratic assignment problem
Системні дослідження та інформаційні технології, 2015, № 2 117
It is important to note, that exactly these 3N terms *
ik and *
jk for each arbi-
trary element g require the complexity )(NO for each new *
ik and *
jk values
evaluation.
After a simple analysis of the right-hand side expressions for ,, ikij
** ,, jkikjk the following dependency between them has been discovered
.**
ijjkikjkik (3)
This means that it is actually not necessary to compute both new values *
ik
and *
jk simultaneously. It is enough to compute anew only one of them and the
second one can be obtained with the use of the first.
However, it is worth reminding that we have considered only those terms
jkikij ,, that connect our elements with each of the rest of the other 3N
elements. So let’s consider now the terms ** ,,,, jkikjkikij RRRRR which denote
the cost change caused by assignments of the flows to distances between the ele-
ments .,, kji The variables jkikij RRR ,, indicate the cost change before ele-
ments i and j are swapped, and the variables ** , jkik RR indicate the cost change
after the exchange of i and j respectively
,ijijij R
,ikijik R
,jkjkjk R
,***
ikikik R
.***
jkjkjk R
The values ** ,,,, jkikjkikij RRRRR are expressed by the following formulae:
))(())(( )()()()()()()()( jkikkjkikjkijkikij ffddffddR
;))(())(( )()()()()()()()( ijjijiijjjiijjii ffddffdd (4)
))(())(( )()()()()()()()( jikijkjiijikkjijik ffddffddR
|;))(())(( )()()()()()()()( jkkjikkijjkkkkii ffddffdd (5)
))(())(( )()()()()()()()( kjijijikjkjijikijk ffddffddR
;))(())(( )()()()()()()()( ikkijkkjiikkkkjj ffddffdd (6)
))(())(( )()()()()()()()(
*
ijkjjkjijijkkjijik ffddffddR
S. Podolsky, Yu. Zorin
ISSN 1681–6048 System Research & Information Technologies, 2015, № 2 118
;))(())(( )()()()()()()()( kiikkiikiikkkkii ffddffdd (7)
))(())(( )()()()()()()()(
*
jikiikijijikkiijjk ffddffddR
.))(())(( )()()()()()()()( kjjkkjjkjjkkkkjj ffddffdd (8)
Hence, we can represent the equality (3) as following
.)()()()()( ****
ijijjkjkikikjkjkikik RRRRR
Now we can compute a new value *
jk with the complexity )1(O using the
computed anew value *
ik and the old values jkikij ,,
.****
jkikijjkikikijjkikjk RRRRR (9)
After substitution of the expressions (4-8) for ** ,,,, jkikjkikij RRRRR into
(10) which are the parts of (9) without deltas, we will obtain a cumbersome ex-
pression (Appendix A) which probably has no benefits on small QAP instances
because of a bunch of arithmetical operations
.**
jkikijjkik RRRRR (10)
To get rid of such complicated representation, an attempt of simplification
has been made with the MATLAB script using simplify embedded function
(Appendix B). As a result the final compact formula has been obtained to com-
pute all the new values *
jk with the time complexity .)1(O
**
ikijikjkjk
).)(( kjkijkjiikijkjkijkjiikij ffffffdddddd
EXPERIMENTAL RESULTS
In order to verify the proposed approach the sample problems provided by
E.Taillard and R.Kothari [8] have been chosen. The comparison of the following
Taillard’s algorithms: the Ro-TS, the Fast ant system (FANT), Tabu Search with
Local Optimization (TsLo) with the proposed algorithm (PzTabu) has been done.
These algorithms have been chosen because of their high repute and availability
of their source codes. All algorithms have been run 50 times on problems with
dimensions varying from 20 to 81. The goal of the first part of the simulation was
to define best and average solution costs obtained by all algorithms. The second
part of simulation has been aimed on comparison of the average time and itera-
tions number required by the algorithms to reach the result not worse than the best
one obtained on the first stage. It may be considered as some measure of the algo-
rithm convergence speed. All collected data is shown in Table.
O(1) delta part computation technique for the quadratic assignment problem
Системні дослідження та інформаційні технології, 2015, № 2 119
T a b l e . Statistical results of comparative analysis of the algorithms for the QAP
solution
Problem
Algo-
rithm
Best cost Mean cost
Mean time to reach
the best cost (ms)
Mean number of iterations
to reach the best cost
Ro-TS 703482 704449 1353 60175
FANT 708654 709059 3394 116938
TsLo 703482 710428 9481 17345
Tai20a
PzTabu 703482 704296 870 39938
Ro-TS 1818442 1823408 6035 83488
FANT 1841298 1894374 68786 107317
TsLo 1825384 1825626 28016 16987
Tai30a
PzTabu 1820934 1821489 3055 48741
Ro-TS 7265144 7269162 269441 1353407
FANT 7350644 7351273 553179 1759429
TsLo 7388361 7396978 777978 65547
Tai60a
PzTabu 7270382 7274858 159796 879714
Ro-TS 91062 91086 241003 560526
FANT 91106 91323 289203 720510
TsLo 91596 91666 323767 15944
Sko81
PzTabu 91030 91061 135472 360150
From Table we can make sure that the proposed approach outperformed all
compared algorithms in terms of operation speed and convergence. It should be
noted that, as expected, the larger the size of the problem the greater is the advan-
tage of the proposed approach. A relatively small number of iteration of the TsLo
algorithm may be explained by the fact that its each iteration performs local opti-
mization procedure which takes longer time.
CONCLUSIONS
The formula obtained in this paper can also be successfully applied to the other
heuristics that use the whole neighbor solutions scanning such as Reactive Tabu
Search [6], heuristic for sparse matrices [7] and others. The Ro-TS algorithm is
the most representative and exploitable because the solution construction is per-
formed only once and the rest of computational time is dedicated for neighbor
solutions scanning and delta values update. As computational experiments
proved, we can get significant performance increase in comparison with well-
known algorithms including the Ro-TS by replacing a half of )(NO computation
operations with the operations of )1(O time complexity.
APPENDIX A. The final formula’s part before simplification
**
jkikijjkik RRRRR
))(())(( )()()()()()()()( jikijkjiijikkjij fdd fddff
))(())(( )()()()()()()()( jkkjikkijjkkkkii ffddffdd
S. Podolsky, Yu. Zorin
ISSN 1681–6048 System Research & Information Technologies, 2015, № 2 120
))(())(( )()()()()()()()( kjjiijikjkjijiki ffddffdd
))(())(( )()()()()()()()( ikkijkkjiikkkkjj ffddffdd
))(())(( )()()()()()()()( jkikkjkikjkijkik ffddffdd
))(())(( )()()()()()()()( ijjijiijjjiijjii ffddffdd
))(())(( )()()()()()()()( ijkjjkjijijkkjij ffddffdd
))(())(( )()()()()()()()( kiikkiikiikkkkii ffddffdd
))(())(( )()()()()()()()( jikiikijjiikkiji ffddffdd
).)(())(( )()()()()()()()( kjjkkjjkjjkkkkjj ffddffdd
APPENDIX B. Matlab formula’s simplification script
clc
clear all
echo off
syms fii fjj fkk fij fji fik fki fjk fkj
syms dii djj dkk dij dji dik dki djk dkj
Rij = ...
(dik - djk) * (fik - fjk) + ... % Missed g = k in delta ij
(dki - dkj) * (fki - fkj) + ... % Missed g = k in delta ij
(dii - djj) * (fii - fjj) + ... % Loopback
(dij - dji) * (fij - fji); % Reverse flows direction
Rik = ...
(dij - dkj) * (fki - fji) + ... % Missed g = j in delta ik
(dji - djk) * (fik - fij) + ... % Missed g = j in delta ik
(dii - dkk) * (fkk - fjj) + ... % Loopback
(dki - dik) * (fjk - fkj); % Reverse flows direction
Rjk = ...
(dki - dji) * (fij - fkj) + ... % Missed g = i in delta jk
(dik - dij) * (fji - fjk) + ... % Missed g = i in delta jk
(djj - dkk) * (fkk - fii) + ... % Loopback
(dkj - djk) * (fik - fki); % Reverse flows direction
R_ik = ...
(dij - dkj) * (fkj - fij) + ... % Missed g = j in delta*
ik
(dji - djk) * (fjk - fji) + ... % Missed g = j in delta*
ik
(dii - dkk) * (fkk - fii) + ... % Loopback
(dik - dki) * (fki - fik); % Reverse flows direction
O(1) delta part computation technique for the quadratic assignment problem
Системні дослідження та інформаційні технології, 2015, № 2 121
R_jk = ...
(dji - dki) * (fki - fji) + ... % Missed g = i in delta*
jk
(dij - dik) * (fik - fij) + ... % Missed g = i in delta*
jk
(djj - dkk) * (fkk - fjj) + ... % Loopback
(djk - dkj) * (fkj - fjk); % Reverse flows direction
x = - Rik - Rjk + Rij + R_ik + R_jk;
simplify(x)
REFERENCES
1. Koopmans T.C., Beckmann M.J. Assignment problems and the location of economic
activities // Econometrica. — 1957. — № 25. — P. 53–76.
2. Sahni S., Gonzalez T. P-complete approximation problems // Journal of the Associa-
tion of Computing Machinery. — 1976. — № 23. — P. 555–565.
3. Taillard E. Robust tabu search for the quadratic assignment problem // Parallel
Computing. — 1991. — № 17. — P. 443–455.
4. Tate D.M., Smith A.E. A genetic approach to the quadratic assignment problem //
Computers and Operations Research. — 1995. — № 22. — P. 73–83.
5. Colorni A., Maniezzo V. The ant system applied to the quadratic assignment problem //
IEEE Transactions on Knowledge and Data Engineering. — 1999. — 11. —
P. 769–778.
6. Battiti R., Tecchiolli G. The reactive tabu search // ORSA Journal on Computing. —
1994. — № 6. — P. 126–140.
7. Paul G. An efficient implementation of the robust tabu search heuristic for sparse
quadratic assignment problems // European Journal of Operational Research. —
2011. — № 209. — P. 215–218.
8. Kothari R., Ghosh D. Insertion based Lin-Kernighan heuristic for single row facility
layout // Computers & Operations Research. — 2013. — № 40(1). — P. 129–136.
Received 17.07.2013
From the Editorial Board: the article corresponds completely to submitted manu-
script.
|