Шумозащитные свойства барьеров, размещенных вдоль городской улицы

Исследованы шумозащитные свойства барьеров, размещенных на краях тротуаров вдоль обеих сторон городской улицы с многоэтажными домами. Шум транспортного потока моделировался источником звука в виде бесконечной пульсирующей полосы, расположенной на проезжей части улицы. Рассмотрены барьеры с акустичес...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Вовк, И.В., Гринченко, В.Т., Мацыпура, В.Т.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут гідромеханіки НАН України 2012
Назва видання:Акустичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/116171
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Шумозащитные свойства барьеров, размещенных вдоль городской улицы / И.В. Вовк, В.Т. Гринченко, В.Т. Мацыпура // Акустичний вісник — 2012. —Т. 15, № 2. — С. 3-16. — Бібліогр.: 12 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-116171
record_format dspace
spelling irk-123456789-1161712017-04-22T03:02:37Z Шумозащитные свойства барьеров, размещенных вдоль городской улицы Вовк, И.В. Гринченко, В.Т. Мацыпура, В.Т. Исследованы шумозащитные свойства барьеров, размещенных на краях тротуаров вдоль обеих сторон городской улицы с многоэтажными домами. Шум транспортного потока моделировался источником звука в виде бесконечной пульсирующей полосы, расположенной на проезжей части улицы. Рассмотрены барьеры с акустически жесткими и звукопоглощающими стенками. В качестве критерия, характеризующего шумозащитные свойства барьеров, выбрано усредненное давление на окнах зданий. Показано, что для барьеров с акустически жесткими поверхностями характерно появление ряда резонансных явлений в областях между барьерами, между домами, а также между барьерами и домами. Таким образом, установка жестких барьеров не приводит к существенному повышению шумозащищенности окон домов и зон тротуаров. В отличие от этого, использование барьеров с поглощающими поверхностями ослабляет резонансные явления и тем самым существенно улучшает шумозащищенность указанных зон. Досліджено шумозахисні властивості бар'єрів, розміщених уздовж обох боків міської вулиці з багатоповерховими будинками. Шум транспортного потоку моделювався джерелом звуку у вигляді нескінченної пульсуючої смуги, розташованої на проїжджій частині вулиці. Розглянуто бар'єри з акустично жорсткими й звукопоглинаючими стінками. За критерій, який би характеризував шумозахисні властивості бар'єрів, вибрано усереднений тиск на вікнах будинків. Показано, що для бар'єрів з акустично жорсткими поверхнями характерна поява ряду резонансних явищ у областях між бар'єрами, між будинками, а також між бар'єрами й будинками. Таким чином, встановлення жорстких бар'єрів не призводить до істотного підвищення шумозахищеності вікон будинків і зони тротуарів. На відміну від цього, використання бар'єрів з поглинаючими поверхнями ослаблює резонансні явища і тим самим істотно поліпшує шумозахищеність вказаних зон. The paper deals with studying the properties of soundproof barriers placed at sidewalk edges the along both sides of a city street with tall buildings. Traffic noise was modeled by a sound source in the form of endless pulsating band located on the roadway. The barriers with the acoustically hard and sound-absorbing walls are considered. An average pressure on the windows of buildings is selected as a criterion for characterizing the properties of soundproof barriers. Typical occurrence of numerous resonance phenomena in the regions between the barriers, between the buildings, as well as between the barriers and buildings is shown for the barriers with the acoustically hard surfaces. Thus, the installation of the hard barriers does not lead to significant increasing of soundproof for the windows and sidewalk zones. In contrast, when using the barriers with sound-absorbing surfaces, the resonance phenomena are attenuated that significantly improves the soundproofing of the mentioned zones. 2012 Article Шумозащитные свойства барьеров, размещенных вдоль городской улицы / И.В. Вовк, В.Т. Гринченко, В.Т. Мацыпура // Акустичний вісник — 2012. —Т. 15, № 2. — С. 3-16. — Бібліогр.: 12 назв. — рос. 1028-7507 http://dspace.nbuv.gov.ua/handle/123456789/116171 534.1 ru Акустичний вісник Інститут гідромеханіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
description Исследованы шумозащитные свойства барьеров, размещенных на краях тротуаров вдоль обеих сторон городской улицы с многоэтажными домами. Шум транспортного потока моделировался источником звука в виде бесконечной пульсирующей полосы, расположенной на проезжей части улицы. Рассмотрены барьеры с акустически жесткими и звукопоглощающими стенками. В качестве критерия, характеризующего шумозащитные свойства барьеров, выбрано усредненное давление на окнах зданий. Показано, что для барьеров с акустически жесткими поверхностями характерно появление ряда резонансных явлений в областях между барьерами, между домами, а также между барьерами и домами. Таким образом, установка жестких барьеров не приводит к существенному повышению шумозащищенности окон домов и зон тротуаров. В отличие от этого, использование барьеров с поглощающими поверхностями ослабляет резонансные явления и тем самым существенно улучшает шумозащищенность указанных зон.
format Article
author Вовк, И.В.
Гринченко, В.Т.
Мацыпура, В.Т.
spellingShingle Вовк, И.В.
Гринченко, В.Т.
Мацыпура, В.Т.
Шумозащитные свойства барьеров, размещенных вдоль городской улицы
Акустичний вісник
author_facet Вовк, И.В.
Гринченко, В.Т.
Мацыпура, В.Т.
author_sort Вовк, И.В.
title Шумозащитные свойства барьеров, размещенных вдоль городской улицы
title_short Шумозащитные свойства барьеров, размещенных вдоль городской улицы
title_full Шумозащитные свойства барьеров, размещенных вдоль городской улицы
title_fullStr Шумозащитные свойства барьеров, размещенных вдоль городской улицы
title_full_unstemmed Шумозащитные свойства барьеров, размещенных вдоль городской улицы
title_sort шумозащитные свойства барьеров, размещенных вдоль городской улицы
publisher Інститут гідромеханіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/116171
citation_txt Шумозащитные свойства барьеров, размещенных вдоль городской улицы / И.В. Вовк, В.Т. Гринченко, В.Т. Мацыпура // Акустичний вісник — 2012. —Т. 15, № 2. — С. 3-16. — Бібліогр.: 12 назв. — рос.
series Акустичний вісник
work_keys_str_mv AT vovkiv šumozaŝitnyesvojstvabarʹerovrazmeŝennyhvdolʹgorodskojulicy
AT grinčenkovt šumozaŝitnyesvojstvabarʹerovrazmeŝennyhvdolʹgorodskojulicy
AT macypuravt šumozaŝitnyesvojstvabarʹerovrazmeŝennyhvdolʹgorodskojulicy
first_indexed 2025-07-08T09:57:26Z
last_indexed 2025-07-08T09:57:26Z
_version_ 1837072279833411584
fulltext ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 УДК 534.1 ШУМОЗАЩИТНЫЕ СВОЙСТВА БАРЬЕРОВ, РАЗМЕЩЕННЫХ ВДОЛЬ ГОРОДСКОЙ УЛИЦЫ И. В. В О В К1∗, В. Т. Г РИ Н Ч ЕН К О1, В. Т. М АЦ Ы П УР А2 1Институт гидромеханики НАН Украины, Киев ул. Желябова, 8/4, 03680, ГСП, Киев-180, Украина ∗E-mail: ivovk@voliacable.com 2Киевский национальный университет имени Тараса Шевченко ул. Владимирская, 64/13, 01601, ГСП, Киев, Украина Получено 14.08.2011 Исследованы шумозащитные свойства барьеров, размещенных на краях тротуаров вдоль обеих сторон городской улицы с многоэтажными домами. Шум транспортного потока моделировался источником звука в виде бесконечной пульсирующей полосы, расположенной на проезжей части улицы. Рассмотрены барьеры с акустически жесткими и звукопоглощающими стенками. В качестве критерия, характеризующего шумозащитные свойства барьеров, вы- брано усредненное давление на окнах зданий. Показано, что для барьеров с акустически жесткими поверхностями характерно появление ряда резонансных явлений в областях между барьерами, между домами, а также между барьерами и домами. Таким образом, установка жестких барьеров не приводит к существенному повышению шумозащищенности окон домов и зон тротуаров. В отличие от этого, использование барьеров с поглощающими поверхностями ослабляет резонансные явления и тем самым существенно улучшает шумозащищенность указанных зон. КЛЮЧЕВЫЕ СЛОВА: шумозащитный барьер, шумозащищенность, импеданс, резонатор Гельмгольца, метод ча- стичных областей Дослiджено шумозахиснi властивостi бар’єрiв, розмiщених уздовж обох бокiв мiської вулицi з багатоповерховими будинками. Шум транспортного потоку моделювався джерелом звуку у виглядi нескiнченної пульсуючої смуги, розташованої на проїжджiй частинi вулицi. Розглянуто бар’єри з акустично жорсткими й звукопоглинаючими стiнками. За критерiй, який би характеризував шумозахиснi властивостi бар’єрiв, вибрано усереднений тиск на вiкнах будинкiв. Показано, що для бар’єрiв з акустично жорсткими поверхнями характерна поява ряду резонансних явищ у областях мiж бар’єрами, мiж будинками, а також мiж бар’єрами й будинками. Таким чином, встановлення жорстких бар’єрiв не призводить до iстотного пiдвищення шумозахищеностi вiкон будинкiв i зони тротуарiв. На вiдмiну вiд цього, використання бар’єрiв з поглинаючими поверхнями ослаблює резонанснi явища i тим самим iстотно полiпшує шумозахищенiсть вказаних зон. КЛЮЧОВI СЛОВА: шумозахисний бар’єр, шумозахищенiсть, iмпеданс, резонатор Гельмгольца, метод частинних областей The paper deals with studying the properties of soundproof barriers placed at sidewalk edges the along both sides of a city street with tall buildings. Traffic noise was modeled by a sound source in the form of endless pulsating band located on the roadway. The barriers with the acoustically hard and sound-absorbing walls are considered. An average pressure on the windows of buildings is selected as a criterion for characterizing the properties of soundproof barriers. Typical occurrence of numerous resonance phenomena in the regions between the barriers, between the buildings, as well as between the barriers and buildings is shown for the barriers with the acoustically hard surfaces. Thus, the installation of the hard barriers does not lead to significant increasing of soundproof for the windows and sidewalk zones. In contrast, when using the barriers with sound-absorbing surfaces, the resonance phenomena are attenuated that significantly improves the soundproofing of the mentioned zones. KEY WORDS: noise barrier, soundproof, impedance, the Helholtz resonator, method of partial domains ВВЕДЕНИЕ Транспорт на городских улицах – наиболее ра- спространенный и интенсивный источник шума в крупных городах [1 – 7]. Вклад потоков легкового и грузового автотранспорта в акустическое загря- знение улиц составляет от 60 до 80 %, в зависи- мости от покрытия проезжей части улиц (асфальт или брусчатка), скорости движения, интенсивно- сти и состава потока [7]. Поэтому в районах, где дома плотно стоят вблизи проезжей части улицы, люди оказываются под воздействием повышенно- го уровня шума как на тротуарах, так и в поме- щениях, окна которых выходят на улицу. В силу специфики городских условий вопрос шумозащи- щенности тротуаров и окон зданий, расположен- ных вдоль городской улицы, существенно отлича- ется от условий вне города, где жилые объекты мо- гут быть размещены достаточно далеко от транс- портных магистралей, и требует отдельного де- тального рассмотрения. Поскольку эта проблема в последние годы становится все более актуальной, в современной научной литературе стали появля- ться работы, посвященные обеспечению защиты от c© И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура, 2012 3 ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 шумов, возникающих на улицах [2, 3, 6, 7]. Среди них особого внимания заслуживают статьи [2,3], в которых представлены попытки теоретически и с помощью модельных экспериментов оценить воз- можность снижения транспортных шумов с помо- щью классических жестких барьеров, устанавли- ваемых на краях тротуаров. К сожалению, одно- значного ответа на вопрос о целесообразности по- добных мероприятий указанные исследования не дали. Вместе с тем, в них показано, что в зонах тротуаров и на стенах фасадов домов частотные зависимости звукового давления шума, создавае- мого транспортом, имеют резко осциллирующий характер с перепадами, достигающими 60 дБ. Цель данной работы состоит в разработке фи- зической и математической моделей улицы с до- мами, на которой могут присутствовать барьеры и источники звука, а также в построении стро- гого эффективного метода расчета акустических полей, возникающих в пространстве между дома- ми. На базе полученных количественных данных предполагается провести анализ эффективности барьеров как средства защиты от шума тротуа- ров и жилых домов в условиях городских улиц с плотной застройкой. 1. ПРИНЯТЫЕ ФИЗИЧЕСКАЯ И МАТЕМА- ТИЧЕСКАЯ МОДЕЛИ На рис. 1 изображена принятая нами физиче- ская модель типичной городской улицы с пло- тной застройкой, вдоль которой с обеих сторон расположены шумозащитные барьеры. Здесь аку- стически жесткая поверхность y=0, x=[0, a+b+c] моделирует поверхности тротуаров и проезжей части. Улица ограничена домами, фасады так- же будем описывать акустически жесткими по- верхностями x=0, y=[0, H ]∪x=[−∞, 0], y=H и x=a+b+c, y=[0, H ]∪x=[a+b+c,∞], y=H . В це- лом геометрию модели считаем не зависящей от направления, перпендикулярного к плоскости ри- сунка. В плоскостях x=b и x=a+b установлены два барьера высотой h. Поверхности между дома- ми и барьерами x=[0, b], y=0 и x=[a+b, a+b+c], y=0 моделируют тротуар. Поверхность между ба- рьерами x=[b, a+b], y=0 представляет собою про- езжую часть улицы. На ней задан источник звука S, имеющий вид бесконечной пульсирующей по- лосы шириной a2−a1, которая моделирует шумя- щий транспортный поток. Полупространство y>0 заполнено воздушной средой с плотностью ρ и ско- ростью звука cs. Пусть обращенные к источнику S (освещенные) поверхности барьеров характеризу- ются некоторой комплексной проводимостью Y , а теневые поверхности барьеров – акустически жес- ткие. Здесь следует напомнить, что для идеальной акустически жесткой поверхности проводимость равна нулю (Y =0), а для идеально поглощающей поверхности Y =1 [11]. Описанная физическая модель с математиче- ской точки зрения эквивалентна плоской задаче, когда звуковое поле не зависит от координаты, перпендикулярной к плоскости рисунка. Приня- тые допущения об акустически жестких поверхно- стях означают, что нормальные составляющие ко- лебательных скоростей на них равны нулю. Зада- ние импеданса на освещенных поверхностях барье- ров дает возможность точнее моделировать аку- стические свойства реальных конструкций. Для гармонического источника искомое поле давления удовлетворяет уравнению Гельмгольца. Временная зависимость выбрана в виде exp(−iωt) и ниже этот множитель везде будет опущен. Представленная математическая модель, с одной стороны, в общих чертах адекватна ситу- ациям, характерным для городских условий, а с другой, – позволяет построить аналитическое решение и соответствующий ему эффективный вычислительный алгоритм. 2. ПОСТРОЕНИЕ АНАЛИТИЧЕСКОГО РЕ- ШЕНИЯ ЗАДАЧИ Введем декартову систему координат (x, y) с центром в точке O и полярную систему координат (r, θ) с центром в точке O1 (см. рис. 1). Как изве- стно, связь между координатами некоторой точки M в двух указанных системах имеет вид x = r cos θ + d, y = r sin θ + H, (1) r = √ (x − d)2 + (y − H)2 , cos θ = x − d r , (2) где d=b+a/2. Решение задачи будем строить на базе метода частичных областей, который ранее успешно при- менялся для изучения шумозащитных свойств ба- рьеров [8 – 10]. В соответствии с идеей этого метода всю область существования звукового поля разо- бьем на шесть подобластей (рис. 1): • область I представляет собой пространство между барьерами 2 и 3 – b ≤ x ≤ a+b, 0≤y≤h; 4 И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 Рис. 1. Геометрия модели: 1 – поверхность тротуаров и проезжей части улицы; 2, 3 – барьеры; 4, 5 – дома; 6 – окна • область II – пространство между домом 4 и ба- рьером 2 слева от дороги – 0≤x≤b, 0≤y≤h; • область III – пространство между до- мом 5 и барьером 3 справа от дороги – a+b≤x≤a+b+c, 0≤y≤h; • область IV – пространство между домами – 0≤x≤a+b+c, h≤y≤H; • область V ограничена поверхностями 0≤x≤a+b+c, y=H и r=d, 0≤θ≤π; • область VI – r ≥ d, 0≤θ≤π. Такое разбиение позволяет построить в каждой из подобластей общее аналитическое решение соо- тветствующей граничной задачи. Так, поле в области I следует представить в та- ком виде, чтобы иметь возможность удовлетво- рить: • граничным условиям на поверхности прое- зжей части b≤x≤a+b, y=0; • импедансным условиям на поверхностях ба- рьеров; • условиям сопряжения звуковых полей на по- верхности b≤x≤a+b, y=H . Указанные условия могут быть выполнены, если искомое поле представить в виде суперпозиции нормальных волн двух плоскопараллельных вол- новодов с жесткими поверхностями шириною a и И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура 5 ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 h соответственно: pI = ∞ ∑ n=0 An cos ( β(1) n (x−b) ) exp ( iγ(1) n y ) + + ∞ ∑ n=0 A(1) n cos ( β(1) n (x−b) ) × × exp ( −iγ (1) n (y−h) ) + + ∞ ∑ n=0 A(2) n cos ( β(2) n y ) exp ( iγ(2) n (x−b) ) + + ∞ ∑ n=0 A(3) n cos ( β(2) n y ) exp ( −iγ(2) n (x−a−b) ) . (3) Здесь β(1) n = nπ a ; γ (1) n = √ k2 − ( β (1) n )2 ; β(2) n = nπ h , γ (2) n = √ k2 − ( β (2) n )2 ; (4) k=ω/c. Граничное условие на поверхности прое- зжей части (b≤x≤a+b, y=0) имеет вид 1 iωρ ∂pI ∂y ∣ ∣ ∣ ∣ y=0 = V (x), (5) где V (x) – функция, задающая распределение амплитуды колебательной скорости поверхностях источника S и проезжей части улицы: V (x) = { v0, x ∈ [a1, a2], 0, x ∈ [b, a1] ∪ [a2, b + a]. Подставив выражение (3) в граничное условие (5), определим связь между коэффициентами An и A (1) n : An = A(1) n exp ( iγ(1) n h ) + ρcVn aδnγ (1) n , (6) где δ0 =1, δn =0.5 при n>0; Vn = a ∫ 0 V (x) cos ( β(1) n x ) dx. (7) С учетом формулы (6) выражение (3) для поля в области I примет вид pI = ∞ ∑ n=0 A(1) n cos ( β(1) n (x−b) ) × × [ exp ( iγ(1) n (y+h) ) +exp ( −iγ(1) n (y−h) )] + + ∞ ∑ n=0 ρcVn aδnγ (1) n cos ( β(1) n (x−b) ) exp ( iγ(1) n y ) + + ∞ ∑ n=0 A(2) n cos ( β(2) n y ) exp ( iγ(2) n (x−b) ) + + ∞ ∑ n=0 A(3) n cos ( β(2) n y ) exp ( −iγ(2) n (x−a−b) ) . (8) Таким образом, благодаря должному выбору ко- эффициентов A (2) n и A (3) n можно выполнить им- педансные условия на поверхностях барьеров, а подходящий набор коэффициентов A (1) n позволяет удовлетворить условия сопряжения звуковых по- лей на границах областей I и II. Поле давления в области II запишем как pII = ∞ ∑ n=0 A(4) n cos ( β(3) n x ) exp ( iγ(3) n y ) + + ∞ ∑ n=0 Ã(4) n cos ( β(3) n x ) exp ( −iγ(3) n (y − h) ) , (9) где β (3) n =nπ/b; γ (3) n = √ k2−(β (3) n )2. Расписав гра- ничное условие ∂pII ∂y = 0, x ∈ [0, b], y = 0, (10) найдем соотношение Ã (4) n =A (4) n exp(−iγ (3) n h), с учетом которого выражение (9) примет вид pII = ∞ ∑ n=0 A(4) n cos ( β(3) n x ) × × exp ( iγ (3) n (y+h) ) +exp ( −iγ (3) n (y−h) ) 1+exp ( 2iγ (3) n h ) . (11) Аналогично поле в области III можно записать так: pIII = ∞ ∑ n=0 A(5) n cos ( β(3) n (x−a−b) ) × × exp ( iγ (3) n (y+h) ) +exp ( −iγ (3) n (y−h) ) 1+exp ( 2iγ (3) n h ) . (12) 6 И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 Поле в области IV имеет вид, схожий с выраже- нием (9): pIV = ∞ ∑ n=0 A(6) n cos ( β(4) n x ) exp ( iγ(4) n (y − h) ) + + ∞ ∑ n=0 Ã(7) n cos ( β(4) n x ) exp ( −iγ(4) n (y − h) ) , (13) где β (4) n =nπ/(a+b+c); γ (4) n = √ k2−(β (4) n )2. Поле в области V представим в форме pV = ∞ ∑ n=0 A(8) n cos ( β(4) n y ) × × exp ( iγ (4) n (x − H) ) + + ∞ ∑ n=0 A(9) n Jn(kr) J ′ n(kd) cos(nθ). (14) Здесь первая сумма представляет собой супер- позицию нормальных волн плоскопараллельного волновода шириною (a+b+c). Она обеспечит со- пряжение звуковых полей на границах областей IV и V. Вторая сумма – это совокупность част- ных решений уравнения Гельмгольца для области в виде полукруга радиуса d. При должном выбо- ре коэффициентов A (9) n она позволяет удовлетво- рить условия сопряжения полей на границе разде- ла областей V и VI. Наконец, поле в области VI имеет вид pVI = ∞ ∑ n=0 A(10) n H (1) n (kr) H ′ n (1)(kd) cos(nθ). (15) Теперь сформируем систему функциональных уравнений, которая определяет условия непрерыв- ности звукового поля на границах раздела обла- стей I, II, III, IV, V, VI и граничные условия на поверхностях барьеров (при y=h): pIV =          pII, x ∈ [b, a + b], pI, x ∈ [0, b], pIII, x ∈ [a + b, a + b + c], (16) ∂pIV ∂y =                    ∂pI ∂y , x ∈ [b, a + b], ∂pII ∂y , x ∈ [0, b], ∂pIII ∂y , x ∈ [a + b, a + b + c], (17) pIV = pV, x = [0, a + b + c], y = H, (18) ∂pIV ∂y = ∂pV ∂y , x = [0, a + b + c], y = H, (19) pV = pVI, r = d, θ = [0, π], (20) ∂pV ∂r = ∂pVI ∂r , r = d, θ = [0, π], (21) 1 iωρ ∂pI ∂x = −Y pI, x = b, y = [0, h], (22) 1 iωρ ∂pI ∂x = Y pI, x = a + b, y = [0, h]. (23) После подстановки выражений (8), (11), (12) – (15) в систему (16) – (23) проведем стандартную процедуру алгебраизации полученных функцио- нальных уравнений, как это делалось, например, в [8 – 10]. Это позволяет прийти к бесконечной си- стеме линейных алгебраических уравнений второ- го рода относительно неизвестных коэффициен- тов A (1) n , . . . , A (10) n . Отметим, что в нашей зада- че основной интерес представляют характеристи- ки поля вдали от ребер барьеров. Как показыва- ют многочисленные исследования, в таких случа- ях достаточную точность численных результатов можно обеспечить с помощью метода простой ре- дукции, удерживая в системе определенное коли- чество неизвестных [10]. Как обычно, оно опреде- ляется опытным путем, на основе анализа невязки при выполнении условий сопряжения на границе раздела частичных областей и закона сохранения энергии звукового поля. Опуская эти подробности, отметим, что в целом удовлетворительные с пра- ктической точки зрения результаты для исследу- емой задачи можно получить при общем количе- стве неизвестных комплексных коэффициентов от 350 до 600 для диапазона частот источника звука от 30 до 1000 Гц. 3. АНАЛИЗ РАСЧЕТНЫХ ДАННЫХ Зададим следующие геометрические параметры рассматриваемой модели (см. рис. 1): высота ба- рьера – h=4 м, ширина проезжей части a=12 м, ширина пешеходных тротуаров слева и справа от дороги одинакова и составляет b=c=4 м, полоса, И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура 7 ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 моделирующая источник шума S, задается коор- динатами a1 =5 м и a2 =7 м. Амплитуда скорости источника звука – v0 =1 м/с. Высота пятиэтажно- го дома H =19 м, а высота каждого из окон при- нята равной 2 м. При этом нижний уровень окон относительно поверхности тротуара для каждого из этажей составляет 2; 5.5; 9; 12.5 и 16 м соответ- ственно. В качестве параметров воздушной среды были выбраны плотность ρ=1.27 кг/м3 и скорость звука cs =331.3 м/с. Прежде всего, рассмотрим, как соотносятся уровни звуковых давлений в некоторых характер- ных точках пространства между домами в зави- симости от наличия или отсутствия барьеров, по- верхности которых предполагаются акустически жесткими. В качестве критерия будем использо- вать отношение [2]: ∆L[дБ] = 20 lg ( |p1(xj, yj)| |p2(xj, yj)| ) , (24) где |p1| – амплитуда давления в некоторой точке с координатами xj , yj при отсутствии барьеров; |p2| – давление в той же точке при наличии барье- ров. Следует отметить, что для проведения расчетов в случае отсутствия барьеров следует упростить исходную задачу, а именно, исключить области I, II и III (см. рис. 1) и соответствующие им по- ля (8), (11) и (12). Кроме того, необходимо исклю- чить условия сопряжения полей (16), (22) и (23), а также заменить условие (17) на следующее соот- ношение при y=0: 1 iωρ ∂pIV ∂y =    v0, x ∈ [a1, a2], 0, x ∈ [0, a1] ∪ [a2, b + a + c]. Существует и альтернативный подход. Доста- точно устремить высоту барьеров к нулю та- ким образом, чтобы выполнялись условия h 6=0 и h/λ�1, где λ – длина волны. Сравнение расчетов, проведенных в рамках обеих описанных моделей, показало, что уже при h/λ≤0.1 их результаты сов- падают до четвертого знака. На рис. 2 представлены частотные зависимости величины ∆L для двух точек на фасаде левого дома (см. рис. 1). Сравнивая их с аналогичными графиками, приведенными в работе [2], отметим хорошее качественное и количественное соответ- ствие. Главная черта представленных кривых – их достаточно беспорядочный, резко осциллирующий характер с перепадами давления, достигающими (50 . . .60) дБ. Конечно, при частотном усреднении становится заметно, что в определенных поддиа- пазонах наличие барьеров действительно способ- ствует некоторому уменьшению давления в рас- сматриваемых точках (примерно на (5 . . . 10) дБ). Очевидно, что в силу своего локального хара- ктера выражение (24) не дает возможности оцени- вать интегральную эффективность барьеров, как это было сделано, например, в [8, 9]. Поэтому мы будем считать наиболее важным заданием шумо- защиту окон зданий, поскольку именно через них шум проникает в офисные и жилые помещения. Тогда для оценки воздействия шума на поверх- ность окон вполне логично использовать пара- метр, представляющий собой усредненное по по- верхности окон звуковое давление, отнесенное к объемной скорости источника: J = 1 S′ 0v0(a2 − a1) ∫ S′ |p|dS′. (25) Здесь интегрирование проводится по поверхности окна S′ (естественно, для плоской задачи – на еди- ницу его ширины); S′ 0 – площадь окна; v0(a2−a1) – объемная колебательная скорость источника. Оче- видно, что преимущественный интерес будет пред- ставляет зависимость параметра J от частоты для окон разных этажей. Для начала рассмотрим тестовую ситуацию, ко- гда барьеры отсутствуют. На рис. 3, а представле- ны частотные зависимости параметра J для окон дома, стоящего слева от барьеров, а на рис. 3, б – для дома, стоящего справа от барьеров. Как ви- дно из графиков, эти кривые изобилуют резкими относительно узкополосными пиками значитель- ной амплитуды на фоне сравнительно низких сре- дних значений J . В целом характер представлен- ных зависимостей не очень сильно меняется от этажа к этажу, хотя следует отметить определен- ное снижение пиковых значений для верхних (че- твертого и пятого) этажей. Значения амплитуд ма- ксимумов, входящих за границы графика, и соо- тветствующие им частоты указаны рядом с пика- ми в виде дробей, где в числителе стоит частота, а в знаменателе – максимальное значение ампли- туды. Чем же обусловлено появление таких резких пи- ков в частотной зависимости параметра J? Для ответа на этот вопрос были проведены расчеты поля давления между домами на частотах, соо- тветствующих некоторым из максимумов. Полу- ченные результаты представлены на рис. 4, а – в. Из их анализа следует, что: • пики в частотных зависимостях величины J обусловлены резонансными явлениями, во- 8 И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 а б Рис. 2. Частотные зависимости величины ∆L в точках с координатами: а – x=0 м, y=3 м; б – x=0 м, y=10 м зникающими в области, ограниченной акусти- чески жесткими фасадами зданий и поверхно- стью проезжей части и тротуаров; при этом распределение поля визуально представляет собой чередующиеся вертикально вытянутые полосы; • резонансы могут возникнуть в тех случаях, когда отношение расстояния между домами к длине волны составляет n/2, где n=1, 2, 3, . . . (для наглядности в верхней части рис. 3 на- несена шкала значений (b+a+c)/λ. Здесь λ – длина волны в воздухе); при этом, поскольку поверхности фасадов акустически жесткие, то на них образуются пучности (т. е. зоны макси- мального значения) давления [12]; • поскольку область между домами с точки зрения акустики представляет собой, по су- ти, открытый резонатор, то ближе к верхней (открытой) части области резонансная струк- тура поля “размывается”, а давление падает, в результате чего и происходит уже отмеченное ослабление пиковых значений J для четвер- того и пятого этажей. Следует отметить, что не все потенциально во- зможные резонансы могут реализоваться в пол- ной мере. Их эффективность во многом зависит от волновых размеров источника S и его расположе- ния на проезжей части. Иными словами, не на всех резонансных частотах источник будет достаточно хорошо согласован с объемом воздушной среды, находящейся между фасадами домов. Именно по- этому на кривых рис. 3 видны не только высоко- амплитудные максимумы, где согласование отно- сительно хорошее, но и масса мелких пиков, где согласование неудовлетворительное. Для того, чтобы выяснить, как распределяе- тся поле на нерезонансных частотах, обратимся к рис. 4, г. На нем представлено распределение поля давления между фасадами домов на частоте 70 Гц, для которой не отмечено каких-либо резких пиков. Как видно из этого графика, распределение поля носит достаточно “размытый” характер и среднее значение амплитуды давления, по мере движения от источника к верхним этажам, постепенно пада- ет. Теперь рассмотрим ситуацию, когда вдоль ули- цы размещены барьеры с акустически жесткими поверхностями (см. рис. 1). На рис. 5 представле- ны частотные зависимости параметра J для тех же вариантов расчетов, что и на рис. 3. Сравни- вая графики, представленные на обоих рисунках, можно отметить следующее: • средний уровень параметра J для нижних этажей (и особенно первого) заметно снизил- ся, примерно на (4 . . .6) дБ, однако его часто- тная зависимость все равно изобилует боль- шим количеством пиков; • уровни большинства пиковых значений пара- метра J уменьшились, по крайней мере, начи- ная со второго этажа; • уровень главного резонансного пика на часто- те 83 Гц практически не изменился. Таким образом, можно заключить, что приме- нение акустически жестких барьеров привело к некоторому снижению среднего уровня звукового давления на окнах нижних этажей и пиковых зна- чений давления на верхних этажах. Тем не менее, ожидавшегося существенного снижения значения параметра J практически не произошло. Можно предположить, что применение барьеров создали условия для появления дополнительного ряда ре- зонансных частот и, соответственно, дополнитель- И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура 9 ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 а б Рис. 3. Частотные зависимости параметра J в отсутствие барьеров: а – дом слева от проезжей части; б – дом справа от проезжей части 10 И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 в г а б Рис. 4. Поле амплитуды давления в области между домами, когда барьеры отсутствуют, на частотах: а – 58 Гц; б – 83 Гц; в – 116 Гц; г – 70 Гц ных пиков в частотной зависимости параметра J . Действительно, барьеры расположены параллель- но друг другу и фасадам зданий, что привело к образованию еще трех открытых резонаторов – одного между барьерами и двух между барьера- ми и поверхностями фасадов. Чтобы убедиться в этом, обратимся к рис. 6. На рис. 6, а, демонстри- рующем распределение поля давления на часто- те 45 Гц, хорошо видны резонансные явления ме- жду барьерами и фасадами зданий. Именно здесь выполняется условие b/λ=c/λ=1/2 и на часто- тной зависимости J возникает явно выраженный пик (см. также рис. 5, – первый этаж). Обратим внимание на то, что указанный резонанс в области между левым барьером и левым фасадом выражен более ярко, чем между правым барьером и правым фасадом. Это можно объяснить более близким ра- сположением источника к левому барьеру. Очевидно, что резонансные ситуации могут ре- ализоваться и на более высоких частотах, для ко- торых выполняется условие b/λ=c/λ=m/2, где m=1, 2, 3, . . . Исходя из этого, на нижних графи- ках рис. 5 нанесены дополнительные шкалы зна- чений a/λ, b/λ, которiе могут помочь в оценке ча- стот потенциально возможных резонансных ситу- аций между барьерами и фасадами зданий. Рис. 6, б иллюстрирует появление резонанса ме- жду барьерами на частоте 58 Гц, что соответству- ет волновому размеру a/λ=2 (естественно, в об- щем для этого должно выполняться условие вида И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура 11 ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 а б Рис. 5. Частотные зависимости параметра J при наличии акустически жестких барьеров: а – дом слева от проезжей части; б – дом справа от проезжей части 12 И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 в г а б Рис. 6. Поле амплитуды давления в области между домами при частоте источника звука: а – 45 Гц; б – 58 Гц; в – 83 Гц; г – 249 Гц a/λ=m/2, где m=1, 2, 3, . . .). Весьма нагляден рис. 6, в, рассчитанный для ча- стоты 83 Гц. Здесь на одной частоте одновремен- но во всех областях (между домами, между ба- рьерами и между барьерами и домами) возника- ют резонансные явления. Это соответствует слу- чаю, когда одновременно (b+a+c)/λ=5, a/λ=3 и b/λ=c/λ=1. При этом создается иллюзия, что звуковое поле как бы “не замечает” присутствия барьеров (ср. рис. 4, б и рис. 6, в). Естествен- но, такой “глобальный” резонанс охватывает всю область между обоими домами и доминирует на всех их этажах (см. рис. 5). Аналогичным обра- зом обстоит дело и на частоте 249 Гц (рис. 6, г). Здесь также имеет место “глобальный” резонанс, однако не столь эффективный, как при 83 Гц. Это связано с тем, что на частоте 249 Гц волновой раз- мер источника звука составляет (a2−a1)/λ=1.54, т. е. превышает длину волны. Из-за возрастания волнового размера такой источник становится на- правленным и уже не может достаточно равномер- но озвучить все пространство между домами. Из рис. 6, г хорошо видно, что от источника действи- тельно исходит относительно узкий звуковой ко- нус, который постепенно расширяется и “размыва- ется”. Именно поэтому пик на частоте 249 Гц хоро- шо просматривается лишь в зоне первого этажа, а выше его уровень существенно снижается. Подводя итог проведенному анализу, можно за- ключить, что в условиях городских улиц приме- И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура 13 ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 а б Рис. 7. Частотные зависимости параметра J при наличии барьеров, у которых поверхности, обращенные к проезжей части улицы, – идеально поглощающие, а обращенные к домам, – акустически жесткие: а – дом слева от проезжей части; б – дом справа от проезжей части а б Рис. 8. Поле амплитуды давления в области между домами (поверхности барьеров, обращенные к проезжей части улицы, – идеально поглощающие, а обращенные к домам, – акустически жесткие) при частоте источника звука: а – 45 Гц; б – 84 Гц нение для ослабления воздействия транспортно- го шума на окна жилых домов и зоны тротуаров барьеров с акустически жесткими поверхностями может не дать ожидаемого эффекта из-за возни- кновения резонансных явлений между домами, са- мими барьерами, а также между барьерами и фа- садами домов. Есть основания предположить, что применение барьеров со стенками, поглощающими звуковую энергию, может существенно улучшить шумозащиту [8, 9]. В качестве иллюстрации на рис. 7 представлены зависимости частотной функции J для барьеров 14 И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 а б Рис. 9. Частотные зависимости параметра J при наличии барьеров, у которых поверхности, обращенные к проезжей части улицы, покрыты решеткой резонансных поглотителей, а обращенные к домам, – акустически жесткие: а – дом слева от проезжей части; б – дом справа от проезжей части с идеально поглощающими поверхностями (Y =1) со стороны проезжей части улицы. Действитель- но, сравнивая графики на рис. 7 с аналогичными зависимостями с рис. 3 и рис. 5, легко убедиться в существенном снижении уровня всех резонан- сных пиков и общем снижении среднего уровня параметра J во всем рассматриваемом диапазоне частот. И хотя отдельные резонансные пики при- сутствуют и здесь, их уровень мал и не превыша- ет (0.25 . . .0.3). Если же обратиться к рис. 8, на котором представлена структура поля амплитуды давления для барьеров с идеально поглощающи- ми стенками со стороны проезжей части улицы, то можно убедиться, что “глобальные” резонан- сы исчезли, а остались только резонансы между барьерами и фасадами домов, характеризующие- ся относительно низкими уровнями. Совершенно очевидно, что для их устранения необходимо наде- лить свойством поглощать звуковую энергию так- же и стенки барьеров, обращенные к фасадам до- мов. Рассмотрим рис. 9, на котором представлены ча- стотные зависимости параметра J для барьеров, покрытых решеткой из резонаторов Гельмгольца. Они представляют собой так называемые резонан- сные поглотители звука, широко используемые на практике для решения различных задач шумоза- щиты [5 – 7,11, 12]. Напомним, что параметры отдельно взятого ре- зонатора Гельмгольца зависят от его геометриче- ских размеров, а именно, глубины b1 и ширины b2 камеры резонатора, диаметра 2r0 и длины l гор- ла резонатора. Мы неявно полагаем, что сечение горла резонатора – круг с площадью σ1 =πr2 0, а сечение камеры – квадрат с площадью σ2 =b1b2. Определив эти величины, можно записать фор- мулы для собственной частоты резонатора Гельм- гольца в воздухе [11]: f0 ≈ 93r0 b2 √ b1(l + ∆l) (26) и импеданса, выраженного в долях ρc и рассчитан- ного на единицу площади основания камеры резо- натора (σ2 =b1b2): Z̄ = nr̃ ρc + i ( ctg ( ωb1 c ) − ωn c (l + ∆l) ) . (27) Здесь r̃ – коэффициент трения в элементах кон- струкции резонатора Гельмгольца (обычно это мелкая сетка или ткань, которая размещается у горла резонатора, [10, 11]); n=σ2/σ1. Величина ∆l=πr0/2 обусловлена наличием так называемой присоединенной массы на концах горла резонато- ра. Как и в работах [8, 9], выберем следующие параметры резонатора Гельмгольца: b1 =0.4 м, b2 =0.05 м, 2r0=4·10−3 м, l=0.5·10−3 м, r̃=2. Они И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура 15 ISSN 1028 -7507 Акустичний вiсник. 2012. Том 15, N 2. С. 3 – 16 соответствуют собственной частоте резонатора f0≈97 Гц. Как видно, частотные зависимости параметра J для барьеров со стенками в виде решеток резона- торов Гельмгольца мало отличаются от таковых для барьеров с идеально поглощающими стенками (ср. соответствующие графики на рис. 9 и рис. 7). Это дает основание утверждать, что барьеры с поглощающими стенками вполне реализуемы на практике. Следовательно, достаточно эффектив- ную шумозащиту на улицах современных городов вполне можно обеспечить. В заключение остается добавить, что рассмо- тренная задача легко обобщается на более сло- жный случай, когда все стенки барьеров поглоща- ют звуковую энергию. ВЫВОДЫ 1. Решена задача о дифракции звуковых волн на шумозащитных барьерах, размещенных по обеим сторонам городской улицы. Математи- ческая модель учитывает наличие многоэта- жных домов по обеим сторонам улицы. Пред- полагается, что поверхности стенок барьеров со стороны проезжей части могут быть аку- стически жесткими или поглощающими. 2. Проведено обоснование выбора критерия эф- фективности шумозащитных свойств барье- ров в условиях городской улицы. 3. Получены численные результаты для широ- кого диапазона частот, проведен их анализ и установлены связи между шумозащитными свойствами барьеров и акустическими свой- ствами их стенок. В частности: • установлено, что при отсутствии барье- ров на ряде частот возможно резкое увеличение акустического давления на окнах всех этажей зданий и в зоне троту- ара, что обусловлено резонансной струк- турой звукового поля; • выяснено, что присутствие барьеров с акустически жесткими поверхностями не позволяет существенно улучшить шумо- защищенность окон домов и зоны троту- аров; • показано, что использование барьеров со звукопоглощающими стенками приводит к эффективному ослаблению резонан- сных эффектов, что обеспечивает значи- тельное улучшение шумозащищенности окон зданий и зон тротуаров. 1. Kotzen B., English C. Enviromental noise barriers.– London/New York: Spon Press, 2009.– 257 p. 2. Ming K., Kwok M. P., Law M. K. A ray model for hard parallel noise barriers in high-rise cities // J. Acoust. Soc. Amer.– 2008.– 123.– P. 121–132. 3. Li K. M., Tang S. H. The predicted barrier effect in the proximity of tall buildings // J. Acoust. Soc. Amer.– 2003.– 114.– P. 821–832. 4. May D. N., Osman M. M. Highway noise barriers: New shapes // J. Sound Vib.– 1980.– 71.– P. 73–101. 5. Осипов Г. Л., Юдин Е. Я., Хюбнер Г., Серге- ев М. В. и др. Снижение шума в зданиях и жилых районах.– М.: Стройиздат, 1987.– 558 с. 6. Защита от шума в градостроительстве / Под ред. Г. Л. Осипова.– М.: Стройиздат, 1993.– 96 с. 7. Иванов Н. И. Инженерная акустика. Теория и практика борьбы с шумом.– М.: Логос, 2008.– 424 с. 8. Вовк И. В., Мацыпура В. Т. Влияние свойств по- верхностей шумозащитного барьера на его эффе- ктивность // Акуст. вiсн.– 2010.– 13, № 1.– С. 3–10. 9. Вовк И. В., Мацыпура В. Т. Шумозащитные свой- ства барьеров, размещенных вдоль обеих сторон транспортной магистрали // Акуст. вiсн.– 2010.– 13, № 4.– С. 3–14. 10. Грiнченко В. Т., Вовк I. В., Маципура В. Т. Основи акустики.– К.: Наук. думка, 2007.– 640 с. 11. Звукоизоляция и звукопоглощение / Под ред. Г. Л. Осипова, В. Н. Бобылева.– М.: Астрель, 2004.– 450 с. 12. Ржевкин С. Н. Курс лекций по теории звука.– М.: Изд-во МГУ, 1960.– 336 с. 16 И. В. Вовк, В. Т. Гринченко, В. Т. Мацыпура