Drag drop on high-speed supercavitating vehicles and supersonic submarines
Supercavitation can significantly reduce the drag of high-speed underwater vehicles. To be located inside the cavity, the shape of the hull varies at different operating velocities and becomes very slender at high speeds. Simple estimations showed that at steady horizontal motion, the drag of a prop...
Gespeichert in:
Datum: | 2015 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут гідромеханіки НАН України
2015
|
Schriftenreihe: | Прикладна гідромеханіка |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/116542 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Drag drop on high-speed supercavitating vehicles and supersonic submarines / I. Nesteruk // Прикладна гідромеханіка. — 2015. — Т. 17, № 4. — С. 52-57. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-116542 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1165422017-04-30T03:02:45Z Drag drop on high-speed supercavitating vehicles and supersonic submarines Nesteruk, I. Науковi статтi Supercavitation can significantly reduce the drag of high-speed underwater vehicles. To be located inside the cavity, the shape of the hull varies at different operating velocities and becomes very slender at high speeds. Simple estimations showed that at steady horizontal motion, the drag of a properly shaped supercavitating vehicle of a given volume decreases with increasing speed. This drag reduction opens up prospects for designing large high-speed underwater vehicles and even supersonic submarines. Суперкавитация может существенно снижать сопротивление высокоскоростных подводных аппаратов. Для размещения корпуса внутри каверны его форма должна изменяться при разных скоростях движения и становится очень удлиненной на больших скоростях. Простые оценки показали, что при установившемся горизонтальном движении сопротивление соответственно сконструированного суперкавитирующего аппарата уменьшается при возрастании скорости. Это падение сопротивления открывает перспективы создания крупнотоннажных высокоскоростных подводных аппаратов и даже сверхзвуковых подводных лодок. Суперкавiтацiя може суттєво знизити опiр високошвидкiсних пiдводних апаратiв. Щоб корпус розташовувався всерединi каверни, його форма має бути рiзною при рiзних швидкостях руху i стає дуже видовженою на великих швидкостях. Простi оцiнки показали, що при усталеному горизонтальному русi опiр вiдповiдно сконструйованого суперкавiтуючого апарата фiксованого об’єму зменшується зi зростанням швидкостi. Це спадання опору вiдкриває перспективи створення великотоннажних високошвидкiсних пiдводних апаратiв i навiть надзвукових пiдводних човнiв. 2015 Article Drag drop on high-speed supercavitating vehicles and supersonic submarines / I. Nesteruk // Прикладна гідромеханіка. — 2015. — Т. 17, № 4. — С. 52-57. — Бібліогр.: 31 назв. — англ. 1561-9087 http://dspace.nbuv.gov.ua/handle/123456789/116542 532.528 en Прикладна гідромеханіка Інститут гідромеханіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Науковi статтi Науковi статтi |
spellingShingle |
Науковi статтi Науковi статтi Nesteruk, I. Drag drop on high-speed supercavitating vehicles and supersonic submarines Прикладна гідромеханіка |
description |
Supercavitation can significantly reduce the drag of high-speed underwater vehicles. To be located inside the cavity, the shape of the hull varies at different operating velocities and becomes very slender at high speeds. Simple estimations showed that at steady horizontal motion, the drag of a properly shaped supercavitating vehicle of a given volume decreases with increasing speed. This drag reduction opens up prospects for designing large high-speed underwater vehicles and even supersonic submarines. |
format |
Article |
author |
Nesteruk, I. |
author_facet |
Nesteruk, I. |
author_sort |
Nesteruk, I. |
title |
Drag drop on high-speed supercavitating vehicles and supersonic submarines |
title_short |
Drag drop on high-speed supercavitating vehicles and supersonic submarines |
title_full |
Drag drop on high-speed supercavitating vehicles and supersonic submarines |
title_fullStr |
Drag drop on high-speed supercavitating vehicles and supersonic submarines |
title_full_unstemmed |
Drag drop on high-speed supercavitating vehicles and supersonic submarines |
title_sort |
drag drop on high-speed supercavitating vehicles and supersonic submarines |
publisher |
Інститут гідромеханіки НАН України |
publishDate |
2015 |
topic_facet |
Науковi статтi |
url |
http://dspace.nbuv.gov.ua/handle/123456789/116542 |
citation_txt |
Drag drop on high-speed supercavitating vehicles and supersonic submarines / I. Nesteruk // Прикладна гідромеханіка. — 2015. — Т. 17, № 4. — С. 52-57. — Бібліогр.: 31 назв. — англ. |
series |
Прикладна гідромеханіка |
work_keys_str_mv |
AT nesteruki dragdroponhighspeedsupercavitatingvehiclesandsupersonicsubmarines |
first_indexed |
2025-07-08T10:33:32Z |
last_indexed |
2025-07-08T10:33:32Z |
_version_ |
1837074549169979392 |
fulltext |
ISSN 1561 -9087 Прикладна гiдромеханiка. 2015. Том 17, N 4. С. 52 – 57
УДК 532.528
DRAG DROP ON HIGH-SPEED SUPERCAVITATING
VEHICLES AND SUPERSONIC SUBMARINES
I. N ES TER UK
|Institute of Hydromechanics, National Academy of Sciences of Ukraine, Kyiv
vul. Zheliabova, 8/4, 03680,Kyiv, Ukraine
E-mail: inesteruk@yahoo.com
Отримано 10.11.2015
Supercavitation can significantly reduce the drag of high-speed underwater vehicles. To be located inside the cavity, the
shape of the hull varies at different operating velocities and becomes very slender at high speeds. Simple estimations
showed that at steady horizontal motion, the drag of a properly shaped supercavitating vehicle of a given volume
decreases with increasing speed. This drag reduction opens up prospects for designing large high-speed underwater
vehicles and even supersonic submarines.
KEY WORDS: supercavitating vehicle, drag reduction, supersonic water flow
Суперкавiтацiя може суттєво знизити опiр високошвидкiсних пiдводних апаратiв. Щоб корпус розташовувався
всерединi каверни, його форма має бути рiзною при рiзних швидкостях руху i стає дуже видовженою на великих
швидкостях. Простi оцiнки показали, що при усталеному горизонтальному русi опiр вiдповiдно сконструйованого
суперкавiтуючого апарата фiксованого об’єму зменшується зi зростанням швидкостi. Це спадання опору вiдкриває
перспективи створення великотоннажних високошвидкiсних пiдводних апаратiв i навiть надзвукових пiдводних
човнiв.
КЛЮЧОВI СЛОВА: суперкавiтуючий апарат, зниження опору, надзвуковий потiк води
Суперкавитация может существенно снижать сопротивление высокоскоростных подводных аппаратов. Для разме-
щения корпуса внутри каверны его форма должна изменяться при разных скоростях движения и становится очень
удлиненной на больших скоростях. Простые оценки показали, что при установившемся горизонтальном движении
сопротивление соответственно сконструированного суперкавитирующего аппарата уменьшается при возрастании
скорости. Это падение сопротивления открывает перспективы создания крупнотоннажных высокоскоростных
подводных аппаратов и даже сверхзвуковых подводных лодок.
КЛЮЧЕВЫЕ СЛОВА: суперкавитирующий аппарат, снижение сопротивления, сверхзвуковое течение воды
INTRODUCTION
The drag of underwater vehicles can be reduced
by using the special shaped hulls without boundary
layer separation (see Fig. 1a, [1, 2]) or by decreasi-
ng the area wetted by water, i.e., by the use of
supercavitation (see Fig. 1b and 1c). In the case of
supercavitation the main part of the hull is located
inside the cavity, therefore the skin-friction drag can
be significantly reduced, since the density of vapor
or/and gas inside the cavity is approximately 800
time less than the water density ρ . This idea was
developed in many theoretical, numerical and experi-
mental investigations in many countries, [3-15]. In
particular, the supersonic velocities (greater than the
speed of sound a ≈ 1450 m/s) were achieved for
small supercavitating projectiles, launched by guns
or special catapults [13-15].
Recently researchers in China are reporting
that they have taken a big step towards creati-
ng a supersonic submarine. This technology could
theoretically get from Shanghai to San Francisco —
about 6,000 miles — in just 100 minutes [16]. The
supercavitating flow pattern shown in Figs. 1b, 1c
yields a large pressure drag, because of the high
pressure acting on the cavitator (a part of the hull,
wetted by water). In this paper we will estimate
this drag and discuss the possibility of constructing
corresponding hulls and obtaining sufficient thrust to
move a large vehicle at supersonic velocity.
1. PRESSURE DRAG ESTIMATIONS
FOR DISC OR NON-SLENDER
CONIC CAVITATORS
The pressure drag X for the steady hori-
zontal supercavitating motion at velocity U can be
expressed with the use of different drag coefficients,
based on the vehicle volume V , the cavitator radius
Rn and the depth of movement h (in meters):
X = 0.5CV ρU2V 2/3 = CV hρg(h + 10)V 2/3 =
52 c© И. Г. Нестерук, 2015
ISSN 1561 -9087 Прикладна гiдромеханiка. 2015. Том 17, N 4. С. 52 – 57
//
Fig. 1. Different axisymmetric underwater flow
patterns:
а) flow without boundary layer separation;
b) supercavitating flow with a disc cavitator;
c) supercavitating flow with a slender conical
cavitator;
the hull is located in the nose part of the cavity only
(1)
= 0.5πCxρU2R2
n
Here g is the acceleration of gravity.
For disc or non-slender conic cavitators (with the
angle 2θ, θ > 250) at subsonic velocities U << a ,
the semi-empiric Garabedian formulas, [17]:
R2 =
x(1 − x)
λ2
,
Rn
L
=
σ
2
√
−Cx lnσ
,
(2)
λ =
L
D
=
√
− lnσ
σ
,
D
Rn
= 2
√
Cx
σ
can be used to estimate the cavity shape at high
Froude numbers. Here R is the cavity radius, based
on the cavity length; λ is the cavity aspect ratio; D is
the maximal cavity diameter; L is the cavity length;
σ is the cavitation number; Cx is the pressure drag on
the cavitator based on its area. The cavity volume can
be obtained by integrating of the first eq. (2). Then
for a vehicle which uses the cavity volume completely
(as shown in Fig. 1b), the volumetric drag coefficient
can be presented as follows, [18]:
CV =
3
√
9πσ4
−16 lnσ
, σ =
2g(h + 10)
U2
. (3)
We consider only the case of vapor cavitation and
neglect the pressure of vapor and gas inside the cavity
in comparison with the ambient water pressure. For
ventilated cavities (see, e.g., [9-11]) the gas pressure
must be taken into account. For very high-speed vehi-
cles moving at limited depth there is no need to use
ventilation since the cavitation number is small and
the cavity is large enough to locate the hull inside it.
It must be noted that the value CV does not depend
on θ and tends to zero with diminishing of the cavi-
tation number (or with increasing the velocity).
2. DRAG ESTIMATIONS ON SLENDER
CAVITATORS IN COMPRESSIBLE FLUID
For the potential of the steady axisymmetric flow
around a slender body, the Laplace equation can be
represented as follows, [19]:
(1 − M2)
∂2Φ
∂x2
+
1
r
∂Φ
∂r
+
∂2Φ
∂r2
= 0, M =
U
a
for both the subsonic M < 0.9 , and the supersonic
M > 1.1 cases (the transonic case needs a special
treatment).
By means of the matched asymptotic expansion
method identical to one presented in [20] or through
the separation of the leading term of order ε2lnε (ε
is a small parameter, ratio of the maximum radius of
the cavity or hull Rm to the length L, see Fig.1) in
the corresponding expressions of the monograph [19],
the following formulas for the flow potential can be
obtained, [21, 22]:
Φ(x, r, ε) = x + ε2 ln εA(x)+
(4)
+ε2{A(x) ln(ωr∗) + B(x)} + O(ε4 ln2 ε)
r∗ =
r
ε
; A(x) = F
dF
dx
; F (x) =
R(x)
ε
; ε <<
1
M
;
(5)
ω =
√
|M2 − 1|; B(x) = −A(x) ln 2 − I(x)
I(x) =
1
2
1
∫
0
dA(ξ)
dξ
sgn(x − ξ) ln |x − ξ| dξ, M < 1,
x
∫
0
dA(ξ)
dξ
sgn(x − ξ) ln |x − ξ| dξ, M > 1.
(6)
И. Г. Нестерук 53
ISSN 1561 -9087 Прикладна гiдромеханiка. 2015. Том 17, N 4. С. 52 – 57
For the subsonic flows, eqs. (4) – (6) differ from
Cole’s potential [20] only by the presence of the addi-
tional term A(x) lnω. In the supersonic case there are
some additional differences in the integral item (6).
The substitution of eq. (4) into Bernoulli integral and
neglecting the gravity forces yield
ε2 ln ε
dA
dx
+ ε2
[
dA
dx
ln(ωF ) +
dB
dx
+
A2
2F 2
]
+
(7)
+O
(
ε4 ln2 ε
)
= 0.5σ.
Since eq. (7) is of the same structure as the
corresponding equation in incompressible fluid, their
solutions are identical in structure as well. With the
use of asymptotical method, presented in [23], the
first and second approximation equations can be wri-
tten as follows:
ε2
d2f1
dx2
=
d2R2
dx2
=
σ
ln ε
, (8)
d2R2
dx2
=
σ
ln ε
− ε2
ln ε
[
dA1
dx
ln(ω2f1)+
(9)
2
dB1
dx
+
A2
1
f1
]
+ O
(
ε2
ln2 ε
)
.
Here A1 = 0.5df1/dx and the functionsB1, I1 can be
obtained from (5) and (6) through the substitution
of A1 for A.
The first approximation eq. (8) and its solution for
the cavity radius (at ε = β)
R2
R2
n
= α
x2
R2
n
+2β
x
Rn
+1, α =
σ
2 lnβ
, β = tg (θ) (10)
are valid for both sub- and supersonic velocities and
coincide with the corresponding equation for the
incompressible fluid, [24].
Equation (10) allows calculating the maximal cavi-
ty diameter D; the cavity length L and the cavi-
tator+cavity aspect ratio λ:
D =
D
Rn
= 2
√
1 − β2
α
,
(11)
L =
L
Rn
=
−β −
√
β2 − α
α
, λ =
L + 1/β
D
.
The influence of the compressibility becomes
perceptible only from the second approximation. The
analytical formulas for the second approximation are
presented in [22, 25]. It was shown that for a subsonic
flow of compressible imponderable fluid at σ > 0,
the supercavity dimensions are greater than those in
incompressible fluid (M → 0). The most significant
influence of the compressibility occurs as U → α. But
the water compressibility extends the cavity sizes no
more than by 10%.
In the supersonic case for positive values of the
cavitation number in the Mach number range 1.1 ≤
M ≤ 1.3, the dimensions of the cavity are greater
than in incompressible fluid (M → 0), whereas at
M ≥ 1.5 they become less. However, the deviations
from the values describing the case of incompressible
fluid do not exceed 10%.
In incompressible fluid the pressure drag of the
conical cavitator is determined in [26] with the use
of the first approximation for the cavity shape and
is in a good agreement with the experimental data
and numerical calculations. Since the first approxi-
mation of the cavity shape doesn’t depend on the
Mach number (see (8), (10)), the method offered in
[26] was simply generalized in [22, 25] for the case
of compressible liquid and the following equation was
obtained for the pressure drag coefficient of slender
cones in the subsonic flows (M < 0.9 ):
Cx = Cx0 + σ +
σ(l2 − l − 2l ln l + l2 ln l − l2k ln lk
2l2k lnβ
,
(12)
lk =
1
1 + βL
, l = 1 − lk.
Cx0 = −2β2
(
ln
βω
2
+ 1
)
. (13)
In the supersonic case (M > 1.1), the drag on the
cavitator doesn’t depend on the cavity shape and the
following formulas can be obtained for the slender
conical cavitators, [19, 22, 25]:
Cx = Cx0 + σ, Cx0 = −2β2
(
ln
βω
2
+
1
2
)
. (14)
So, the compressibility of liquid influences only on
the value Cx0 which can be treated as a theoreti-
cal limit of the drag when σ → 0. Specifically, for
conic cavitator, this value Cx0 is determined by eqs.
(13) and (14) in the subsonic and supersonic cases,
respectively. The numerical results based on formulae
(13) and (14) are represented in Fig. 2 by lines for
cones with different values of the angle 2θ. Some
numerical results available in the literature are also
54 И. Г. Нестерук
ISSN 1561 -9087 Прикладна гiдромеханiка. 2015. Том 17, N 4. С. 52 – 57
Fig 2. Calculations of the cx0 values for different
conical cavitators.
Slender body theory (eqs. (13) and (14), [22, 25])
are represented by lines, non-linear numerical
methods [27, 28] – by markers
shown in Fig. 2 by markers. It can be seen that
formulas (13) and (14), obtained with the use of the
slender body theory, are in rather good agreement
with the numerical non-linear calculations performed
in [27, 28]. It should be noted that the drag increases
as the Mach number is near 1.0. This tendency is si-
gnificant for thicker cones. Thus, slender conical cavi-
tators are preferable for supersonic vehicles (similar
situation occurs in the case of supersonic airplanes,
which have a sharp nose).
Knowing Cx , the drag coefficients CV and CV h
can be calculated with the use of eqs. (1), (10) and
(12-14)
CV = πCx
[
R3
n
γV1
]2/3
, CV h =
0.5CV U2
g(h + 10)
;
(15)
Vt
R3
n
= π
(
1
3β
+
α
3
L
3
+ βL
2
+ L
)
, γ =
V
Vt
≤ 1,
where γ is the part of the cavitator+cavity volume
Vt used to locate the hull. To estimate the additional
laminar friction drag on the slender conical cavitator
with the volume Vb = π/(3β), the following formula
was used, [29]:
∆CV =
4.708√
Re V
√
Vb
V
; Re V =
UV 1/3
ν
. (16)
3. RESULTS AND DISCUSSION
The results of calculations with the use of (11)-
(16) are represented in Figs. 3 and 4. Fig. 3 shows
that the volumetric drag coefficient slightly depends
on the cavitator shape and increases with increasing
the depth of horizontal movement. To compare with
the laminar useparated flow pattern (as shown in Fig.
1a), formula (16) with Vb = V and the water viscosity
ν = 1.3 · 10−6 m2/s was used for different values of
the vehicle volume V = 10−3; 1; 103m3 (see dotted li-
nes). In can be seen that supercavitation is preferable
for small and very fast vehicles (the examples of the
calculations of the critical hull volume are presented
in [18]). Equation (16) yields estimation for the mi-
nimum possible drag of the attached flow pattern,
since at large Reynolds numbers, the friction drag
drastically increases due to the turbulence. The cri-
tical Reynolds number for the laminar-to-turbulent
transition can be rather high for slender unseparated
bodies, [30, 31], nevertheless at large subsonic and
supersonic speeds the use of supercavitation is evi-
dently preferable.
The CV h calculations (shown in Fig. 4) are very
surprising, since drag of a supercavitating vehicle
of a fixed volume (its hull shape is changeable to
be located inside the cavity), moving at constant
depth, decreases with the increasing the velocity (see
dashed (disc or non-slender conical cavitator) and
solid (slender conical cavitator, β = 0.1) lines). In
particular, the drag of a proper shaped supersonic
vehicle can be smaller than subsonic one. This feature
is only inherent with supercavitation. In air (or in
water without separation) the drag increases with
speed.
At very high velocities the use of supercavitation
is limited by the increase of the corresponding aspect
ratio of the cavity (see dotted lines for the slender
conical cavitator, β = 0.1). The aspect ratio of the
vehicle λV - can be smaller than λ , but in this case
only a part of the cavity volume is used to locate
the hull (as shown in Fig. 1c), the value γ decreases
and CV and CV h increase (see eq. (15)). Thus, at
very high speeds and small depths supercavitation
requires very strong and slender hulls to withstand
heavy longitudinal forces and to avoid buckling. To
balance the weight of the supercavitating vehicle the
corresponding lift force must be created with the
use of planning or fins, piercing the cavity (see, e.g.,
[12]). Some estimations of the corresponding additi-
onal drag are presented in [18].
Let us estimate the thrust of a supersonic
underwater submarine (U = 1600m/s; V =
1000m3; h = 10m, β = 0.1; λV = 80, γ = 0.5)
И. Г. Нестерук 55
ISSN 1561 -9087 Прикладна гiдромеханiка. 2015. Том 17, N 4. С. 52 – 57
Fig 3. Volumetric drag coefficients for supercavitating (at different values of the depth h; γ = 1) and
attached flows. Disc and non-slender conical cavitators – eq. (3), dashed lines; slender conical cavitators,
eqs. (11)-(16): solid lines V = 1m3; β = 0.05; 0.1; 0.2 (thickness decreases for slenderer ones); “stars” –
V = 10−3m3;β = 0.05; “crosses” – V = 1000m3 ; β = 0.05. Values of CV for the laminar unseparated flow
pattern (shown in Fig. 1a) are represented by dotted lines for V = 10−3; 1; 1000m3 (the thickness is
increasing with the vehicle volume; eq. (9), Vb = V )
Fig 4. Drag coefficients CV h (γ = 1) and the cavitator+cavity aspect ratio at different values of the depth
h = 10; 50; 200 m (the thickness of the lines is increasing with the depth). CV h for disc and non-slender
conical cavitators, eq. (3), (15) – dashed lines; for the slender conical cavitator, eqs. (11) – (15), β = 0.1;
V = 1m3 - solid lines. Values λ/1000 for the slender conical cavitator, eq. (11), β = 0.1 -– dotted lines
which must be equal to the drag in the horizontal
steady motion. We can expect a very small value of
CV ≈ 10−5, if its very slender hull is located inside
the cavity (as shown in Fig. 1c). Then X ≈ 1280kN
and is comparable with the thrust of modern rocket
engines. To estimate the range of such submarine let
us use the relationship between the operation time T
and the specific impulse Isp and the mass mf of the
fuel: T = Ispmf/X. At Isp = 5000m/s and mf = 106
the operation time is approximately 3900 seconds and
the range of the submarine is approximately 6250 km,
i.e., comparable with the distance between Shanghai
and San-Francisco.
CONCLUSIONS
The drag of a supercavitating vehicle was esti-
mated with the use of the slender body theory for sub-
and supersonic velocities. The results are in rather
good agreement with the known non-linear calculati-
ons. It was revealed that at steady horizontal moti-
on, the drag of a properly shaped supercavitating
vehicle of a given volume decreases with increasing
56 И. Г. Нестерук
ISSN 1561 -9087 Прикладна гiдромеханiка. 2015. Том 17, N 4. С. 52 – 57
speed. This drag reduction opens up prospects for
designing large high-speed underwater vehicles and
even supersonic submarines, since the correspondi-
ng thrust values could be obtained with the use
of modern rocket engines. To be located inside the
cavity, the shape of the hull varies at different
operating velocities and becomes very slender at high
speeds. This fact creates challenges to strengthen the
construction of the hulls in order to withstand heavy
longitudinal forces and to avoid buckling.
1. Nesteruk I. Can Shapes with Negative Pressure
Gradients Prevent Cavitation. FEDSM’034TH
ASME - JSME Joint Fluids Engineering Conference
Honolulu, Hawaii. USA, July 6–11, FEDSM2003 -
45323. – 2003.
2. Nesteruk I. Rigid Bodies without Boundary-Layer
Separation// Int. J. of Fluid Mechanics Research. –
2014. –V. 41(3).– P. 260-281.
3. Logvinovich G.V. Hydrodynamics of Flows with Free
Boundaries.–Halsted, 1973. – 208 p.
4. Knapp R. T., Daily J. W. and Hammitt F. G.
Cavitation.– McGraw Hill, New York, 1970.– 688 p.
5. Buyvol, V.N. Oscillations and stability of deformed
systems in fluid – Кiev: Naukova Dumka, 1975. – 192
p. (In Russian).
6. Franc J.P. and Michel J.M. Fundamentals of Cavi-
tation, Kluwer, Dordrecht. – 2004.
7. Nesteruk, I. ed. Supercavitation. Advances and
Perspectives. – Springer. – 2012. – 230p.
8. Cameron P. J. K., Rogers P. H., Doane J. W. and
Gifford D. H. An Experiment for the Study of Free-
Flying Supercavitating Projectiles// J. Fluids Eng.,
doi:10.1115/1.4003560. – V. 133(2).– 2011.
9. Wosnik M. and Arndt R. E. A. Measurements in Hi-
gh Void-Fraction Bubbly Wakes Created by Venti-
lated Supercavitation//J. Fluids Eng. Paper No: FE-
12-1230; doi: 10.1115/1.4023193.– V. 135(1). – 2013.
10. Huang Yu. X.„ Ch., Du,T., Liao, L., Wu, X., Zheng
Zh. and Wang Y. Study of Characteristics of Cloud
Cavity Around Axisymmetric Projectile by Large
Eddy Simulation//J. Fluids Eng. Paper No: FE-13-
1216; doi: 10.1115/1.4026583. – 2014.– V. 136(5).
11. Rashidi I., Passandideh-Fard Mo., Pasandideh-Fard
Ma. and Nouri N. M. Numerical and Experi-
mental Study of a Ventilated Supercavitating Vehi-
cle// J.Fluids Eng. Paper No: FE-13-1289; doi:
10.1115/1.4027383. – 2014.– V. 136(10).
12. Zou W. and Liu H. Modeling and Simulati-
ons of the Supercavitating Vehicle With Its Tail-
Slaps//J. Fluids Eng. Paper No: FE-14-1007; doi:
10.1115/1.4029330. – 2015.– V. 137(4).
13. Kirschner I. N. Results of Selected Experiments
Involving Supercavitating Flows// VKI/RTO Speci-
al Course on Supercavitation. Brussels: Von Karman
Institute for Fluid Dynamics. – 2001.
14. Savchenko Yu. N. Perspectives of the Supercavitation
Flow Applications// Int. Conf. on Superfast Marine
Vehicles Moving Above, Under and in Water Surface
(SuperFAST’2008), 2–4 July 2008. St. Petersburg,
Russia.– 2008.
15. Savchenko, Yu.N., Zverkhovsky, A.N. Procedure of
experimental study of the high-speed motion of
supercavitating inertial models in water // Applied
Hydromechanics – 2009.– V. 11(4), – P. 69–75. (In
Russian).
16. http://www.extremetech.com/extreme/188752-
chinas-supersonic-submarine-which-could- gofrom-
shanghai-to-san-francisco-in-100-minutes-creeps-
ever-closer-to-reality
17. Garabedian P.R. Calculation of Axially Symmetric
Cavities and Jets// Pac. J. Math.– 1956.– V. 6(4). –
P. 611 - 684.
18. Nesteruk I. Drag Effectiveness of Supercavitating
Underwater Hulls// in: Supercavitation, I. Nesteruk,
Ed. Springer, – 2012. – P. 79 – 106.
19. Frankl F. I. and Karpovich E. A. Gas Dynamics of
Thin Bodies,Interscience Pub., New York. – 1953.–
175p.
20. Cole J. D. Perturbation Methods in Applied
Mathematics, Blaisdell Pub. Co.: Waltham, London.
– 1968.– 274p.
21. Nesteruk, I. Body forms of minimal drag// Dopovidi
AN Ukr.SSR, ser. A – 1989. – N 4 – P. 57-60. (In
Ukrainian).
22. Nesteruk I. Influence of the Flow Unsteadiness,
Compressibility and Capillarity on Long Axi-
symmetric Cavities// Fifth Int. Symposium on Cavi-
tation (Cav2003), Osaka, Japan.– 2003.
23. Nesteruk I. Determination of the Form of a
Thin Axisymmetric Cavity on the Basis of an
integrodifferential equation// Fluid Dynamics, DOI:
10.1007/BF01050087 – 1985.– V. 20(5).– P. 735-741.
24. Nesteruk I. On the Shape of a Slender Axisymmetric
Cavity in a Ponderable Liquid// Fluid Dynamics.
DOI: 10.1007/BF01052000. –1979.– V.14(6). – P. 923
- 927.
25. Nesteruk I. Calculation of steady axisymmetric
supercavity flows of compressible fluid// Bulletin of
Univ. of Kiev, Ser.: Phys. and Math. – 2003. – N 4,
P. 109 - 118.(In Ukrainian).
26. Nesteruk I. Some Problems of Axisymmetric
Cavitation Flows// Fluid Dynamics. DOI:
10.1007/BF01090694. –1982. – V.17( 1). – P.
21 - 27.
27. Guzevsky L. G. Numerical Analysis of Cavitation
Flows. Preprint N 40-79 of SB AS USSR. Novosibirsk:
Heat-Physics Institute ( In Russian). – 1979.
28. Al’ev G. A. Transonic separation flow of water past a
circular cone// Fluid Dynamics. – 1983. – V. 18( 2).
– P. 296 - 299.
29. Buraga O.A., Nesteruk I.G. and Savchenko Yu. N.
Comparison of Slender Axisymmetric Body Drag
Under Unseparated and Supercavitational Flow Regi-
mes// Int. J. Fluid Mechanics Research. – 2006. – V.
33(3). – P. 255 - 264.
30. Nesteruk I. Peculiarities of Turbulization and
Separation of Boundary-Layer on Slender Axi-
symmetric Subsonic Bodies// Naukovi visti, NTUU
“Kyiv Polytechnic Institute” – 2002. – N3, –P. 70-76.
(In Ukrainian).
31. Nesteruk,I., Passoni G. and Redaelli A. Shape
of Aquatic Animals and Their Swimming Effi-
ciency//J. Marine Biology, Article ID 470715,
doi:10.1155/2014/470715. – 2014.
И. Г. Нестерук 57
|