Konstantinov effect in helium II
We consider reflection of first and second sound waves by a rigid flat wall in helium II. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
Назва видання: | Физика низких температур |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/116904 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Konstantinov effect in helium II / L.A. Melnikovsky // Физика низких температур. — 2008. — Т. 34, № 4-5. — С. 395–399. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-116904 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1169042017-05-19T03:02:55Z Konstantinov effect in helium II Melnikovsky, L.A. Жидкий гелий We consider reflection of first and second sound waves by a rigid flat wall in helium II. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence. 2008 Article Konstantinov effect in helium II / L.A. Melnikovsky // Физика низких температур. — 2008. — Т. 34, № 4-5. — С. 395–399. — Бібліогр.: 11 назв. — англ. 0132-6414 PACS: 67.25.dg;67.25.dt;67.55.dm http://dspace.nbuv.gov.ua/handle/123456789/116904 en Физика низких температур Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Жидкий гелий Жидкий гелий |
spellingShingle |
Жидкий гелий Жидкий гелий Melnikovsky, L.A. Konstantinov effect in helium II Физика низких температур |
description |
We consider reflection of first and second sound waves by a rigid flat wall in helium II. A nontrivial dependence
of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted
at slanted incidence. |
format |
Article |
author |
Melnikovsky, L.A. |
author_facet |
Melnikovsky, L.A. |
author_sort |
Melnikovsky, L.A. |
title |
Konstantinov effect in helium II |
title_short |
Konstantinov effect in helium II |
title_full |
Konstantinov effect in helium II |
title_fullStr |
Konstantinov effect in helium II |
title_full_unstemmed |
Konstantinov effect in helium II |
title_sort |
konstantinov effect in helium ii |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2008 |
topic_facet |
Жидкий гелий |
url |
http://dspace.nbuv.gov.ua/handle/123456789/116904 |
citation_txt |
Konstantinov effect in helium II / L.A. Melnikovsky // Физика низких температур. — 2008. — Т. 34, № 4-5. — С. 395–399. — Бібліогр.: 11 назв. — англ. |
series |
Физика низких температур |
work_keys_str_mv |
AT melnikovskyla konstantinoveffectinheliumii |
first_indexed |
2025-07-08T11:17:35Z |
last_indexed |
2025-07-08T11:17:35Z |
_version_ |
1837077318900645888 |
fulltext |
Fizika Nizkikh Temperatur, 2008, v. 34, Nos. 4/5, p. 395–399
Konstantinov effect in helium II
L.A. Melnikovsky
P.L. Kapitza Institute for Physical Problems, Moscow, Russia
E-mail: leva@kapitza.ras.ru
Received November 22, 2007
We consider reflection of first and second sound waves by a rigid flat wall in helium II. A nontrivial de-
pendence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted
at slanted incidence.
PACS: 67.25.dg Transport, hydrodynamics, and superflow;
67.25.dt Sound and excitations;
67.55.dm Two-fluid model; phenomenology.
Keywords: second sound, reflection coefficients, sound absorption, strong anisotropy.
1. Introduction
Sound absorption in air at a plane surface may be sur-
prisingly high and has strong anisotropy [1,2]. This phe-
nomenon is very important in acoustics and is sometimes
referred to as Konstantinov effect. Qualitative explana-
tion of the effect is two fold [3].
— Air velocity in an oblique wave has a non-zero com-
ponent tangential to the surface. At the surface itself,
however, the velocity is clamped. Large velocity gradient
in a thin boundary layer results is a large viscous dissipa-
tion of energy.
— Not only the velocity, but also the temperature, un-
dergo periodic oscillation in a sound wave. Temperature
of the wall (and adjoined gas), however, is constant. Ther-
mal conductance in presence of a large temperature gradi-
ent in the boundary layer again leads to high energy
dissipation.
Helium II supports two types of motion and its hydro-
dynamics is much richer than that of a gas. The former
features two independent sound modes: first sound and
second sound [4]. Due to anomalously small thermal ex-
pansion of helium, these modes can be viewed as purely
pressure and temperature waves, respectively. To solve
the problem of sound reflection in superfluid one must
take both modes into account.
Propagation of multiple bulk modes in helium II is a
consequence of existence of additional hydrodynamic
variables. In Sec. 2 we find all three nontrivial harmonic
(i.e., proportional to exp( )i i tkr � � ) solutions of linear
superfluid hydrodynamic equations.
Some of the variables are effectively eliminated in re-
stricted geometry. In particular, a steady cell wall elimi-
nates the perpendicular component of the mass flux j and
the normal velocity vn: the boundary condition* at the
wall is
j v� � �0 0, n . (1)
Fourth sound [5] is one result of such elimination. This is
the only sound mode in a narrow channel, both tempera-
ture and pressure oscillating coherently in this wave. In
general, the sound modes, independent in bulk liquid, be-
gin to interact at the boundary**. The boundary condition
(1) selects a two-dimensional subspace of solutions for
particular frequency �. Specific solutions correspond to
the reflection of first and second sound (Secs. 3 and 4).
Interestingly enough, incident sound energy is not only
reflected and dissipated as it happens in a normal fluid,
but is also converted between first and second sound.
© L.A. Melnikovsky, 2008
* The heat transfer through the interface at low temperature can be neglected due to Kapitza resistance. The heat flux at the in-
terface vanishes simultaneously with the perpendicular component of the normal velocity vn� .
** Sound reflection at the free helium surface and at the solid helium boundary is extensively explored [6–9].
2. Harmonic solutions
Consider the linearized equations of superfluid hydro-
dynamics [10]:
���
�
�
�
j
x
i
i
0, (2)
�j
p
x x
v
x
v
x
v
x
i
i k
n
i
k
n
k
i
ik n
l
l
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �
2
3
�
�
�
�
�
�
�
�
�
�
�
�
x
v
x
w
xi
n
l
l
s
l
l
� �
�
2 1 , (3)
v
x x
v
x
w
x
s
k
k k
n
l
l
s
l
l
.
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �
�
4 3 , (4)
T
v
x
T
x
n
l
l l
� ��� �� �� �
�
�
� �
�
�
�
�
�
�
2
, (5)
where �, � �1 4� , � 2, � 3, �are dissipative coefficients,� is
entropy per unit mass, p, �, T are pressure, chemical po-
tential, and temperature, vs, vn, and w v v� �n s are
superfluid, normal, and relative velocities, and � and j are
mass and momentum densities. The velocities and the mo-
mentum density are coupled by the equation
j v w v w� � � �� � � �s n n s . (6)
Further simplification is facilitated by ignoring ther-
mal expansion (we therefore disregard the difference be-
tween specific heats c T / T� �� � at constant pressure and
at constant volume). Namely put
p s� � �2� , (7)
�� �� �� �� � � �� � � � �� �T p T s 2 , (8)
T cT�� � �, (9)
where s p/� �( ) /�� 1 2 is the first sound velocity. The prime
denotes small deviation of the variables from their equi-
librium values.
In a harmonic perturbation, the space and time depend-
ence of all deviations takes the form*
exp( )i i tkr � � . (10)
To find all possible harmonic excitations in bulk he-
lium we substitute this exponential term in Eqs. (2)–(5)
and keep linear terms only.
Mass conservation (2) gives
��� � k ji i . (11)
The momentum conservation law (3) can be trans-
formed as follows:
� � � � � � ��
�
�
�i j ip k k vn k k v k vi i k i k i
n
k ik l
n
l� � �
2
3
� � �k k w vi k
s
k
n
k( )� � �1 2 ,
and, using (7), (6), and (11)
( ) ( )� � � � � � �� � � � �i k / j iA s / k k j i k w /i i k k
s
i2 2 2
� �iBk k wi k k 0, (12)
where the constants A / /� �( )� � �3 2 and B A s� �( )� �1 .
From the energy conservation law (5) for harmonic de-
viation we get
T T T v k ik Tn
l l�� � ��� �� �� � �� � � �2 0.
Using (6), (9), and (11) this can be reduced to
T k w c i k Ts
i i�� �� �� � �( )2 . (13)
Finally, substituting the exponential term (10) and (6)
in (4) we obtain
� � � � �i j w / iki
n
i i� � � �( )
� � � � �k w k j w k /i
s
k k k
s
k k( ( ))� � � � �3 4
Combining this with (8), (11), and (13)
� � � ��j i s / k k j w Gk k wi i k k
n
i i k k� � � � �( )4
2 0,
(14)
where
G
T
c i k
is�
�
� �
�
�
�
�
�
�
�
�
��
��
�� �
� ��
2
2 4 3( )
� � � �
�
�
�
�
�
�
�
�
T
c
i
T k
c
s
s
� �
�
�
� �
� �
� ��
2 2 2
2 2 4 3( ) .
Equations (12) and (14) can be written together as
�L
j
w
�
�
�
� 0,
where �L is a square 6 6� matrix composed of the coeffi-
cients from (12) and (14). The linear system is consistent
if det �L � 0. Due to the system isotropy, the determinant
cannot depend on individual components of k i . Instead it
depends on k k ki i2 � only. We therefore can put
k ky z� � 0 and treat �L as a 4 4� matrix:
396 Fizika Nizkikh Temperatur, 2008, v. 34, Nos. 4/5
L.A. Melnikovsky
* It is important to mention that unbounded solutions (those with complex wave vector k) should not be overlooked in a re-
stricted geometry.
�
( ) ( )
L
s / iA i / k i / B k
i k / i k
s
�
� � � � �
�
� � � � �� �
� � � �
2 2 2
2 2
0 0
0 0 � �
� � � ��
� ��
s
n
n
/
s / i k Gk� � � � �
�
�
�
�
( )2
4
2 20 0
0 0
.
After factorization det �L simplifies to
det �
( ) ( )
( )
L
iA i / s / k i / B k
i s / k
s� � � � �
� �
� � � � �� �
� � �
2 2 2
4
2 2 � �
�
��n Gk 2
� �
�
� � � � � �
� ��
i k / i k /s
n
2 2
.
All nontrivial solutions immediately follow:
� �
��
�
2
1
2 2� � �
�
�
�
�k s i A i
� � ��
�
�
�
�
�
�
�
� �k s i k s1
2 2
2 1
2 24
3
�
�
�
� , (15)
� �
��
�
�
� �
�
2
2
2
2
2
2
2
2
2
2� � �
�
�
�
� �k G i iB / k
T
c
k ss
n
s
n
,
(16)
� � �� �i k / n3
2 , (17)
where s2 is the second sound velocity.
Roots k1 (15) and k 2 (16) correspond to «longitudi-
nal» solutions where j w ki i i� � 1 2, , while the root k 3
(17) corresponds to a «transverse» one j k w ki i i i
3 3 0� � .
The approximation in (15) and (16) is based on an as-
sumption of low bulk damping, i.e. | | | | | |k k k3 2 1�� � . This
implies complete splitting between first and second sound,
namely w � 0 for (15) and j � 0 for (16). In the third solu-
tion (17), the superfluid velocity vanishes v s � 0, i.e. the
mass flux and the relative velocity are coupled by the rela-
tion j w� �n .
3. First sound reflection
To avoid complications associated with wall deforma-
tion, consider a perfectly rigid flat surface. We therefore
ignore numerous peculiarities of sound transmission into
solids. By 1 denote the angle of incidence for the first
sound wave (see Fig. 1). The subscripts I1, R1, and R2 re-
fer to the incident first, reflected first, and reflected sec-
ond sound waves, respectively. The x axis runs along the
wall and the y axis is directed into the liquid.
T h e b o u n d a r y c o n d i t i o n s ( 1 ) j y � 0, w y � 0,
j wx
s
x� �� 0 can be written in the matrix form
j
j
j
j
I
I
R
R
1 1
1 1
1 1
1 1
0
0
0
0
sin
cos
sin
cos
�
�
�
�
�
�
�
�
�
�
�
�
�
0
0
2 2
2 2
3
w
w
w
R
R
n
x
sin
cos
�
�n
y
x
y
w
w
w
3
3
3
�
�
�
�
�
��
�
�
�sw
w
0
0
, (18)
where cos ( ) sin2
2 2
2 2 2
11 � � s /s , to satisfy the condition
k kI
x
R
x
1 2� . The last term on the left-hand side of (18) rep-
resents the transverse surface wave with a wave vector
k 3. The wave must decay away from the boundary, there-
fore Im k
y
3
0� . This requirement selects the sign in (19),
which is the transversality relation w k3 3� :
w
w
k
k
k
k
x
y
y
x
3
3
3
3
3
1 1
�
�
�
� ��
�
�
�
�
�
�
�
�sin
�
�
�
�
�
�
�
�
�
� �e ei i
k k
! !/ /
sin sin
4
1 1
4
2 2
(19)
where � � �� �n / . Substituting this in (18) we get
j
j
j
j
I
I
R
R
1 1
1 1
1 1
1 1
0 0
sin
cos
sin
cos
�
�
�
�
�
�
�
�
�
�
�
�
�
�� �
�
s R
R
x
n
y
y
w
w
w
w
w
2 2
2 2
3
3
3
0
sin
cos
�
�
� 0
Konstantinov effect in helium II
Fizika Nizkikh Temperatur, 2008, v. 34, Nos. 4/5 397
y
x
kR2
kR1
kI1 "
#
$
Fig. 1. First sound reflection.
and
2 1 2
2
1
2
1
4 2
1
j w
k
I R s n
i�
�
�
� �
�!sin
sin
cos
cos
cos
si
/e
�
n 2
1
0
�
�
�
� .
Second sound is slower than first sound, i.e. s s� 2, conse-
quently %2 2! / and cos &2 0. One can therefore neglect
the first term in parenthesis
w j
k
k
R I
n
i2 1
2
1
2
1
1 1 1
4
2
� �
�
sin
cos sin tan /� �!e �
.
(20)
Similarly, the amplitude of the reflected first sound is ob-
tained from the equation
j k
j
j kI n
I
i
R n1 1
2
1
1
4
1
1 1
2�
�
�
!
sin
cos
sin
/
�
�
�
�
�
�e
1
1
4
1j R
i� !
�e / cos
�
�
�
�
�
�
�
�
�
��
�� !
n
x
n
i y
k w
w
1 1 3
4
3
0
sin
/
�e
.
From this we have
j j
k
k
R I
n
i
n
1 1
1 1
2
1
4
1 1
2
1
�
�
�
�� �
� �
!
�
�
cos sin
cos sin
/e
e�i!/
.
4
(21)
Reflection and conversion efficiency must be charac-
terized by appropriate coefficients R F /FR I11 1 1� and
R F /FR I12 2 1� , respectively. Here F1 and F2 are the energy
fluxes in the first and second sound waves. They are given
by the expressions
F
s
j1
2
2
�
�
| | , F
s
ws n
2
2 2
2
�
� �
�
| | .
Using (21) and (20) we get
R
k
k
n
i
n
i11
1 1
2
1
4
1 1
2
1
�
�
�
�
�
� �
� �
!
!
�
�
cos sin
cos sin
/e
e /4
2
'
'
'
'
'
' , (22)
( (
R
s
s
k
k
s n
n
i
12
2
4
1
2
2
1
2
1 1 1
4
2
4
�
�
sin
cos sin tan /
� �
� � !
�e
.
(23)
Sample graph of these functions is illustrated on Fig. 2.
The reflection coefficient R11 has a minimum of
min R11 3 2 2� � (24)
at finite angle of incidence. The value at the minimum is the
same as for the sound reflection in usual hydrodynamics [2].
4. Second sound reflection
The same approach can be used to investigate the sec-
ond sound wave incident at an angle 2 (see Fig. 3). The
boundary conditions in this case are
0
0
0
0
2 2
2 2
2 2
2 2
w
w
w
w
I
I
R
R
sin
cos
sin
cos
�
�
�
�
�
�
�
�
�
�
�
�
�
j
j
R
R
1 1
1 1
0
0
sin
cos
�
�
�
�
�
��
�
�
�
�
�n
x
n
y
x
y
sw
w
w
w
w
w
3
3
3
3
0
0
.
After simplification this gives
2 2 1
4
1
2
2
2
1
2
� �
�
� �
!
s n I R
i
n sw j
k
� �
�
�
�e / cos
sin
sin
sin
cos
cos
�
�
�
1
2
.
The last term in parenthesis is always negligible (the
equation is meaningful only if sin %2 2s /s). This gives
j w
k
k
R s I
n
i
n
1 2
2
2
2
4
1 2 1 2
2
� �
�
�
�
� �!
sin
cos sin sin/
�e
.
(25)
398 Fizika Nizkikh Temperatur, 2008, v. 34, Nos. 4/5
L.A. Melnikovsky
0
0.2
0.4
0.6
0.8
1
10 20 30 40 50 60 70 80 90
1, deg
R11
R12
Fig. 2. Reflection and conversion coefficients R11 and R12 vs.
the angle of incidence 1.
y
x
kR2
kR1
kI2 #
"
#
Fig. 3. Second sound reflection.
The conversion coefficient R F /FR I21 1 2� is therefore
given by
( (
R
s
s
k
k
s n
i
n
21
2
2
2 4
2
4
1 2 1 2
2
4
�
�
� �
� �!
sin
cos sin sin/
�e
. (26)
Its maximum
max R
s
s
s
n
21
24�
�
�
(27)
is reached at the critical angle sin / �2 2s s.
Amplitude of the reflected second sound wave is
found from the relation
w
w k
R
I
i
n s
2
2
4
2 2
1 2
��
� �
!e /
sin
tan tan
� �
�
�
�
�
�
� �
�
�
�
��
� �
!e i
n s
k
/
sin
tan tan
4
2 2
1 2 , (28)
where tan sin sin � � 1 2 2
2 2 2
2s / s s and Im (tan )1 0)
(selected by the requirement Im k
y
1
0* ). The reflection
coefficient is therefore
R
k ki
n s
i22
4
2 2 1 2 2 2
4
�
� �
�
� � �
� �
!
!
�
�
e
e
/
/
sin tan sin tan
n sk k2 2 1 2 2 2
2
sin tan sin tan �
'
'
'
'
'
'
�
.
(29)
These functions for sample parameters are plotted on
Fig. 4.
5. Discussion
In helium II sound reflection at slanted incidence by a
plane impervious wall is suppressed for both first and se-
cond sound. This phenomenon is similar to the Kon-
stantinov effect in ordinary gases.
Coincident with the reflection suppression, a sound
conversion takes place. The effect has strong angle de-
pendence and should allow direct experimental verifica-
tion. Moreover, there exist heat pulse propagation mea-
surements [11] where the pulse transit time was often
much shorter than that expected for second sound. This
phenomenon is usually explained by an anomalously long
phonon free path at low temperatures or by sound conver-
sion in bulk (due to nonlinear effects) or at liquid-vapour
interface. It seems probable that fast propagation is in fact
a manifestation of the sound conversion described in this
paper, so that the heat pulse is transformed at some wall
into the pressure pulse and is later transformed back near
the receiver. The signal therefore travels (some part of)
the path with the velocity of first sound.
I thank A.F. Andreev and V.I. Marchenko for fruitful
discussions. The work was supported in parts by RFBR
grants 06-02-17369, 06-02-17281 and RF president pro-
gram 7018.2006.2.
1. K.F. Herzfeld, Phys. Rev. 53 , 899 (1938).
2. B.P. Konstantinov, Zh. Tekh. Fiz. 9, 226 (1939).
3. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Perga-
mon Press, Oxford (1987).
4. L.D. Landau, J. Phys. USSR 5, 71 (1941).
5. K.R. Atkins, Phys. Rev. 113, 962 (1959).
6. J.R. Pellam, Phys. Rev. 73, 608 (1948).
7. R.B. Dingle, Proc. Phys. Soc. A61 , 9 (1948).
8. D.M. Chernikova, Sov. Phys. JETP 20 , 358 (1965).
9. M.Yu. Kagan and Yu.A. Kosevich, Fiz. Nizk. Temp. 14,
787 (1988) [Sov. J. Low Temp. Phys. 14 , 433 (1988)].
10. I.M. Khalatnikov, An Introduction to the Theory of Super-
fluidity, W.A.Benjamin, New York-Amsterdam (1965).
11. J.R. Pellam, Phys. Rev. 75, 1183 (1949).
Konstantinov effect in helium II
Fizika Nizkikh Temperatur, 2008, v. 34, Nos. 4/5 399
0
0.5
1
1.5
2
10 20 30 40 50 60 70 80 90
R21
R22
2, deg
Fig. 4. Reflection and conversion coefficients R22 and R21 vs.
the angle of incidence 2. Note, that the energy conservation
gives R R22 2 21 1 2cos cos cos � ) , and R R22 21 1� � is not a vi-
olation!
|