Dynamics of bound soliton states in regularized dispersive equations

The nonstationary dynamics of topological solitons (dislocations, domain walls, fluxons) and their bound states in one-dimensional systems with high dispersion are investigated. Dynamical features of a moving kink emitting radiation and breathers are studied analytically. Conditions of the breathe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Bogdan, M.M., Charkina, O.V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/117344
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dynamics of bound soliton states in regularized dispersive equations / M.M. Bogdan, O.V. Charkina // Физика низких температур. — 2008. — Т. 34, № 7. — С. 713–720. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The nonstationary dynamics of topological solitons (dislocations, domain walls, fluxons) and their bound states in one-dimensional systems with high dispersion are investigated. Dynamical features of a moving kink emitting radiation and breathers are studied analytically. Conditions of the breather excitation and its dynamical properties are specified. Processes of soliton complex formation are studied analytically and numerically in relation to the strength of the dispersion, soliton velocity, and distance between solitons. It is shown that moving bound soliton complexes with internal structure can be stabilized by an external force in a dissipative medium then their velocities depend in a step-like manner on a driving strength.