Amplification of localized acoustic waves by the electron drift in a quantum well

We have investigated acoustic waves in a heterostructure with a layer embedded into a semiconductor providing acoustic waves localization near the layer and electron confinement inside the layer. For layer thicknesses smaller than wavelengths we have obtained and analyzed the dispersion relation for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Demidenko, A. A., Kochelap, V. A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 1999
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/117857
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Amplification of localized acoustic waves by the electron drift in a quantum well / A. A. Demidenko, V. A. Kochelap // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1999. — Т. 2, № 1. — С. 11-24. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-117857
record_format dspace
fulltext
spelling irk-123456789-1178572017-05-28T03:02:30Z Amplification of localized acoustic waves by the electron drift in a quantum well Demidenko, A. A. Kochelap, V. A. We have investigated acoustic waves in a heterostructure with a layer embedded into a semiconductor providing acoustic waves localization near the layer and electron confinement inside the layer. For layer thicknesses smaller than wavelengths we have obtained and analyzed the dispersion relation for the localized waves. For electrons into the layer we have supposed that parallel transport is semiclassical, while perpendicular electron motion is quantized. For two-dimensional confined electrons interacting with the acoustic waves we have solved the Boltzmann equation in a parallel electric field. The solutions have been found for electron-phonon interaction via deformation potential. The dispersion relation for coupled charge density and acoustic waves has been analyzed. We have established conditions of amplification of localized acoustic waves under the electron drift for two extreme cases: i) the only lowest two-dimensional subband is populated, ii) a large number of the subbands are populated. We have found that the amplification coefficient of the acoustic waves in THz-rigion is of the order of 100 cm⁻¹. We have discussed the results and compared them with acoustic waves amplification in bulk like semiconductors. 1999 Article Amplification of localized acoustic waves by the electron drift in a quantum well / A. A. Demidenko, V. A. Kochelap // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1999. — Т. 2, № 1. — С. 11-24. — Бібліогр.: 32 назв. — англ. 1560-8034 PACS 63.22, 72.20, 73.20.D http://dspace.nbuv.gov.ua/handle/123456789/117857 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We have investigated acoustic waves in a heterostructure with a layer embedded into a semiconductor providing acoustic waves localization near the layer and electron confinement inside the layer. For layer thicknesses smaller than wavelengths we have obtained and analyzed the dispersion relation for the localized waves. For electrons into the layer we have supposed that parallel transport is semiclassical, while perpendicular electron motion is quantized. For two-dimensional confined electrons interacting with the acoustic waves we have solved the Boltzmann equation in a parallel electric field. The solutions have been found for electron-phonon interaction via deformation potential. The dispersion relation for coupled charge density and acoustic waves has been analyzed. We have established conditions of amplification of localized acoustic waves under the electron drift for two extreme cases: i) the only lowest two-dimensional subband is populated, ii) a large number of the subbands are populated. We have found that the amplification coefficient of the acoustic waves in THz-rigion is of the order of 100 cm⁻¹. We have discussed the results and compared them with acoustic waves amplification in bulk like semiconductors.
format Article
author Demidenko, A. A.
Kochelap, V. A.
spellingShingle Demidenko, A. A.
Kochelap, V. A.
Amplification of localized acoustic waves by the electron drift in a quantum well
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Demidenko, A. A.
Kochelap, V. A.
author_sort Demidenko, A. A.
title Amplification of localized acoustic waves by the electron drift in a quantum well
title_short Amplification of localized acoustic waves by the electron drift in a quantum well
title_full Amplification of localized acoustic waves by the electron drift in a quantum well
title_fullStr Amplification of localized acoustic waves by the electron drift in a quantum well
title_full_unstemmed Amplification of localized acoustic waves by the electron drift in a quantum well
title_sort amplification of localized acoustic waves by the electron drift in a quantum well
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/117857
citation_txt Amplification of localized acoustic waves by the electron drift in a quantum well / A. A. Demidenko, V. A. Kochelap // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1999. — Т. 2, № 1. — С. 11-24. — Бібліогр.: 32 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT demidenkoaa amplificationoflocalizedacousticwavesbytheelectrondriftinaquantumwell
AT kochelapva amplificationoflocalizedacousticwavesbytheelectrondriftinaquantumwell
first_indexed 2025-07-08T12:54:35Z
last_indexed 2025-07-08T12:54:35Z
_version_ 1837083422659444736