ESR studies of nitrogen atoms stabilized in aggregates of krypton–nitrogen nanoclusters immersed in superfluid helium
Impurity–helium condensates (IHCs) containing nitrogen and krypton atoms immersed in superfluid ⁴He have been studied via a CW electron spin resonance (ESR) technique. The IHCs are gel-like aggregates of nanoclusters composed of impurity species. It was found that the addition of krypton atoms to...
Saved in:
Date: | 2012 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
Series: | Физика низких температур |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/117923 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | ESR studies of nitrogen atoms stabilized in aggregates of krypton–nitrogen nanoclusters immersed in superfluid helium / S. Mao, R.E. Boltnev, V.V. Khmelenko, D.M. Lee // Физика низких температур. — 2012. — Т. 38, № 11. — С. 1313–1319. — Бібліогр.: 45 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Impurity–helium condensates (IHCs) containing nitrogen and krypton atoms immersed in superfluid ⁴He
have been studied via a CW electron spin resonance (ESR) technique. The IHCs are gel-like aggregates of nanoclusters
composed of impurity species. It was found that the addition of krypton atoms to the nitrogen–helium
gas mixture used for preparation of IHCs increases efficiency of stabilization of nitrogen atoms. We have
achieved high average (5·10¹⁹ cm⁻³) and local (2·10²¹ cm⁻³) concentrations of nitrogen atoms in kryptonnitrogen–helium
condensates. The analysis of ESR lines shows that three different sites exist for stabilization of
nitrogen atoms in krypton-nitrogen nanoclusters. Nitrogen atoms are stabilized in the krypton core of nanoclusters,
in the nitrogen molecular layer which covers the Kr core and on the surface of the nanoclusters. High concentrations
of nitrogen atoms achieved in IHCs provide an important step in the search for magnetic ordering effects
at low temperatures. |
---|