Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane

The 2-d wave equation wtt = Δw, t belongs (0, T), on the half-plane x1 > 0 controlled by the Neumann boundary condition wx1(0, x2, t) = δ(x2)u(t) is considered in Sobolev spaces, where T > 0 is a constant and u  L∞(0, T) is a control. This control system is transformed into a control system f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Fardigola, L.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/117982
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Modified Sobolev Spaces in Controllability Problems for the Wave Equation on a Half-Plane / L.V. Fardigola // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 1. — С. 18-44— Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The 2-d wave equation wtt = Δw, t belongs (0, T), on the half-plane x1 > 0 controlled by the Neumann boundary condition wx1(0, x2, t) = δ(x2)u(t) is considered in Sobolev spaces, where T > 0 is a constant and u  L∞(0, T) is a control. This control system is transformed into a control system for the 1-d wave equation in modified Sobolev spaces introduced and studied in the paper, and they play the main role in the study. The necessary and sufficient conditions of (approximate) L∞-controllability are obtained for the 1-d control problem. It is also proved that the 2-d control system replicates the controllability properties of the 1-d control system and vise versa. Finally, the necessary and suffcient conditions of (approximate) L∞- controllability are obtained for the 2-d control problem.