On Integration of One Class of Systems of Lax-Type Equations

A nonlinear system of Lax-type equations is studied. The system is the basis of the construction of triangular models for commutative systems of linear non-selfadjoint bounded operators. Some of its solutions for n = 4 are described. In one of the cases, the general solution is explicitly expressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Lunyov, A.A., Oliynyk, E.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/117983
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Integration of One Class of Systems of Lax-Type Equations / A.A. Lunyov, E.V. Oliynyk // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 1. — С. 45-62— Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-117983
record_format dspace
spelling irk-123456789-1179832017-05-28T10:24:17Z On Integration of One Class of Systems of Lax-Type Equations Lunyov, A.A. Oliynyk, E.V. A nonlinear system of Lax-type equations is studied. The system is the basis of the construction of triangular models for commutative systems of linear non-selfadjoint bounded operators. Some of its solutions for n = 4 are described. In one of the cases, the general solution is explicitly expressed in terms of special (elliptic) functions. Исследуется нелинейная система уравнений типа Лакса, которая лежит в основе построения треугольных моделей для коммутативных систем линейных несамосопряженных ограниченных операторов. Описаны некоторые ее решения при n = 4. В одном из случаев общее решение явно выражается в терминах специальных (эллиптических) функций. Досліджується нелінійна система рівнянь типу Лакса, яка лежить в основі побудови трикутних моделей для комутативних систем лінійних несамоспряжених обмежених операторів. Описано деякі її розв'язки при n = 4. В одному з випадків загальний розв'язок явно виражається в термінах спеціальних (еліптичних) функцій. 2015 Article On Integration of One Class of Systems of Lax-Type Equations / A.A. Lunyov, E.V. Oliynyk // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 1. — С. 45-62— Бібліогр.: 7 назв. — англ. 1812-9471 MSC2000: 47A48, 47N20, 34G20 DOI: 10.15407/mag11.01.045 http://dspace.nbuv.gov.ua/handle/123456789/117983 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A nonlinear system of Lax-type equations is studied. The system is the basis of the construction of triangular models for commutative systems of linear non-selfadjoint bounded operators. Some of its solutions for n = 4 are described. In one of the cases, the general solution is explicitly expressed in terms of special (elliptic) functions.
format Article
author Lunyov, A.A.
Oliynyk, E.V.
spellingShingle Lunyov, A.A.
Oliynyk, E.V.
On Integration of One Class of Systems of Lax-Type Equations
Журнал математической физики, анализа, геометрии
author_facet Lunyov, A.A.
Oliynyk, E.V.
author_sort Lunyov, A.A.
title On Integration of One Class of Systems of Lax-Type Equations
title_short On Integration of One Class of Systems of Lax-Type Equations
title_full On Integration of One Class of Systems of Lax-Type Equations
title_fullStr On Integration of One Class of Systems of Lax-Type Equations
title_full_unstemmed On Integration of One Class of Systems of Lax-Type Equations
title_sort on integration of one class of systems of lax-type equations
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/117983
citation_txt On Integration of One Class of Systems of Lax-Type Equations / A.A. Lunyov, E.V. Oliynyk // Журнал математической физики, анализа, геометрии. — 2015. — Т. 11, № 1. — С. 45-62— Бібліогр.: 7 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT lunyovaa onintegrationofoneclassofsystemsoflaxtypeequations
AT oliynykev onintegrationofoneclassofsystemsoflaxtypeequations
first_indexed 2025-07-08T13:06:58Z
last_indexed 2025-07-08T13:06:58Z
_version_ 1837084200852783104
fulltext Journal of Mathematical Physics, Analysis, Geometry 2015, vol. 11, No. 1, pp. 45–62 On Integration of One Class of Systems of Lax-Type Equations A.A. Lunyov Institute of Applied Mathematics and Mechanics of the NAS of Ukraine 74, R. Luxemburg Str., Donetsk 83114, Ukraine E-mail: A.A.Lunyov@gmail.com E.V. Oliynyk V.N. Karazin Kharkiv National University 4, Svobody Sq., Kharkiv 61022, Ukraine E-mail: elenaoliynik@gmail.com Received February 12, 2013, revised May 15, 2014 A nonlinear system of Lax-type equations is studied. The system is the basis of the construction of triangular models for commutative systems of linear non-selfadjoint bounded operators. Some of its solutions for n = 4 are described. In one of the cases, the general solution is explicitly expressed in terms of special (elliptic) functions. Key words: triangular models, nonlinear differential equations, commu- tative systems of linear non-selfadjoint operators. Mathematics Subject Classification 2010: 47A48, 47N20, 34G20. 1. Introduction As is well known from [1, 5], an approach based on Lax’s idea to write the initial nonlinear equation in the form L′(x) = i[L(x), A(x)], where L,A are some differential operators, is the main method of integration of nonlinear equations. It is established that if the Lax pair {L,A} is found for a nonlinear equation, then this equation can be ’integrated’. In this paper, we study the system of equations d dx (σ2 + λγ(x)) = i [a(x), σ2 + λγ(x)] , γ(0) = γ+, x ∈ [0, l], λ ∈ C, (1.1) c© A.A. Lunyov and E.V. Oliynyk, 2015 A.A. Lunyov and E.V. Oliynyk which is equivalent to the special system of the Lax-type equations    [a(x), γ(x)] = 0, x ∈ [0, l], γ′(x) = i[a(x), σ2], x ∈ [0, l], γ(0) = γ+ (1.2) where a(x) is a spectral matrix measure, γ(x), σ2, γ + are selfadjoint n×n matrices, and a(x) > 0, tr a(x) ≡ 1, x ∈ [0, l]. (1.3) System (1.2) appears in the construction of triangular models for commutative systems of non-selfadjoint bounded operators. The purpose of this paper is to describe and study all the pairs of matrix functions {a(x), γ(x)}, the solutions of system (1.2) (when n = 4), for the given selfadjoint n× n matrices γ+ and σ2 such that γ(x) ∈ AC([0, l];Cn×n), a(x) ∈ L1([0, l];Cn×n), (1.4) and (1.3) takes place. In [7], general qualities of the solutions of system (1.2) for the case n = 3 are obtained and the descriptions of all solutions of this system for different cases are given. The idea of paper [7] is used in this paper. This idea lies in the fact that in the case when γ+ (and so γ(x) also) has a simple spectrum, a(x) is a polynomial of γ(x) of no higher degree than n− 1 (with scalar coefficients depending on x). When n = 4 and the matrices σ2, γ+ have a simple spectrum, the explicit form of the solution in terms of elliptic functions is obtained (see Theorem 2.2 and Corollary 2.3). In Example 2.4, the solutions expressed by trigonometric functions are found. When studying cubic dependency of a(x) from γ(x) (n = 4), the explicit form of the solution is also expressed in terms of special (elliptic) functions (see Theorem 3.2 and Corollary 3.3). 2. Description of the Solutions of System (1.2) Proposition 2.1. Let σ2 = diag(b1, . . . , bn), γ+ = α1σ2 + α0I + iC, (2.1) where α1, α0 ∈ R, the matrix C = (cjk)n j,k=1 = −C∗ and cjj = 0 when j ∈ {1, . . . , n}. Further, let κ0, κ1, κ2 ∈ L1[0, l] be real functions. Then the pair {a(·), γ(·)}, where a(x) = κ2(x)γ(x)2 + κ1(x)γ(x) + κ0(x), x ∈ [0, l] and γ(·) = (γjk(·))n j,k=1, 46 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations is the solution of system (1.2) if and only if the equalities γjj(x) = γ+ jj , j ∈ {1, . . . , n}, (2.2) γjk(x) = iei(bj−bk)(K1(x)+(γ+ jj+γ+ kk)K2(x))yjk(x), j 6= k, (2.3) hold as x ∈ [0, l], where Kj(x) := x∫ 0 κj(t)dt, j ∈ {1, 2}, (2.4) and the functions yjk(·), j 6= k, satisfy the system    y′jk(x) = (bk − bj)κ2(x) n∑ s=1 s6=j,k yjs(x)ysk(x), x ∈ [0, l], j 6= k, ykj(x) = −yjk(x), x ∈ [0, l], j 6= k, yjk(0) = cjk, j 6= k. (2.5) Besides, if cjk ∈ R, j 6= k, every solution of system (2.5) is real. P r o o f. Since a(x) commutes with γ(x), then system (1.2) has the form { γ′(x) = i[κ2(x)γ(x)2 + κ1(x)γ(x), σ2], x ∈ [0, l], γ(0) = γ+. (2.6) By Lemma 3.12 from [7], in view of the diagonal form of σ2, (2.23) is true for every solution of system (2.6). Taking this into account, system (2.6) takes the form    γ′jk(x) = i(bj − bk)(κ1(x) + κ2(x)(γjj + γkk)) + i(bj − bk)κ2(x) n∑ s=1 s6=j,k γjs(x)γsk(x), x ∈ [0, l], j 6= k, γkj(x) = γjk(x), x ∈ [0, l], j 6= k, γjk(0) = γjk, j 6= k. (2.7) We search the solution of this system in the form of (2.24). In view of (2.1), γjj = α1bj + α0, j ∈ {1, . . . , n}, holds. Therefore formula (2.24) becomes γjk(x) = iEj(x)/Ek(x)yjk(x), Ej(x) := eibj(K1(x)+(α1bj+2α0)K2(x)). (2.8) After substituting formula (2.8) into system (2.7), it is easy to check that it is equivalent to (2.5). Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 47 A.A. Lunyov and E.V. Oliynyk Now let the matrix C be real. We are to prove that every solution of sys- tem (2.5) is real. Let {yjk(·)}j 6=k be some (complex-valued) solution of sys- tem (2.5). Let ujk(·) := Re yjk(·), vjk(·) := Im yjk(·), j 6= k. (2.9) By separating the imaginary part from the equations of problem (2.5) and taking into account that cjk ∈ R, j 6= k, we obtain the following system on the functions vjk(·):    v′jk = (bk − bj)κ2(x) n∑ s=1 s 6=j,k (uskvjs + ujsvsk), x ∈ [0, l], j 6= k, vjk(0) = 0, j 6= k. (2.10) System (2.10) is a Cauchy problem for the system of linear ordinary differential equations with zero initial data. Therefore, by the uniqueness theorem, vjk(·) = 0, j 6= k, which signifies the reality of the solution {yjk(·)}j 6=k. Theorem 2.2. Let n = 4, b4 < b1 < b2 < b3, b1 + b2 = b3 + b4, (2.11) α3 := b3 − b2 b3 − b1 , α4 := b4 − b2 b4 − b1 . (2.12) Further, let cjk ∈ R, cjk = −ckj , j, k ∈ {1, 2, 3, 4}, (2.13) c1k > 0, k ∈ {2, 3, 4}, (2.14) c23 = √ α3 · c13, c24 = −√α4 · c14, c34 = 0. (2.15) Next suppose β3 := b2 − b1 b3 − b1 , β4 := b2 − b1 b4 − b1 , (2.16) α := c14 c13 , β := β3 + β4α 2, (2.17) F (y) := y∫ c13 du u √ c2 12 + β(u2 − c2 13) , (2.18) ρ := √ (b3 − b1)(b3 − b2), (2.19) v(x) := F−1 (ρK2(x)) , (2.20) 48 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations where F−1(·) is the function inverse to the function F (·). Let (y−0 , y+ 0 ) ⊂ R be the largest by inclusion interval containing the number c13, and the inequality c2 12 + β(y2 − c2 13) > 0, y−0 < y < y+ 0 , (2.21) be true. Further, let κ0, κ1κ2 ∈ L1[0, l] be real functions and the functions K1(x), K2(x) be given by the equalities Kj(x) := ∫ x 0 κj(t)dt, j = 1, 2, and F (y−0 ) < ρK2(x) < F (y+ 0 ), x ∈ [0, l). (2.22) Then the pair {a(·), γ(·)}, where a(x) = κ2(x)γ(x)2+κ1(x)γ(x)+κ0(x), x ∈ [0, l], is the solution of system (1.2) if and only if the equalities γjj(x) = γ+ jj , j ∈ {1, . . . , n}, (2.23) γjk(x) = iei(bj−bk)(K1(x)+(γ+ jj+γ+ kk)K2(x))yjk(x), j 6= k, (2.24) hold as x ∈ [0, l], where the functions yjk, j 6= k are given by y12(x) = √ c2 12 + β(v2(x)− c2 13), (2.25) y13(x) = v(x), (2.26) y14(x) = αv(x), (2.27) y23(x) = √ α3 v(x), (2.28) y24(x) = −√α4 αv(x), (2.29) y34(x) = 0, (2.30) ykj(x) = yjk(x), 1 6 j < k 6 4. (2.31) P r o o f. First check that the set {y12(·), y13(·), y14(·), y23(·), y24(·), y34(·)} is the solution of system (2.5). Inequality (2.22) implies that the function v(·), given by formula (2.20), is correctly defined on the segment [0, l], besides, v(x) ∈ (y−0 , y+ 0 ), x ∈ [0, l). Therefore the equality F (v(x)) = ρK2(x), x ∈ [0, l], is true. Differentiating it, we obtain v′(x)F ′(v(x)) = ρκ2(x), x ∈ [0, l]. Hence, taking into account (2.18), (2.25), (2.26), (2.28), we obtain y′13(x) = v′(x) = ρκ2(x)v(x) √ c2 12 + β(v2(x)− c2 13) = ρκ2(x)v(x)y12(x) (2.32) = ρ√ α3 κ2(x)y12(x)y23(x) = (b3 − b1)κ2(x)y12(x)y23(x), x ∈ [0, l]. (2.33) Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 49 A.A. Lunyov and E.V. Oliynyk Note that accordingly to (2.11), the equality α3α4 = 1 is true. Therefore, √ α3(b1 − b3)√ α4 = α3(b1 − b3) = b2 − b3 = b4 − b1, and in virtue of (2.26), (2.27), (2.33),(2.28), (2.29), we have y′14(x) = αy′13(x) = α(b3 − b1)κ2(x)y12(x)y23(x) = √ α3(b1 − b3)√ α4 κ2(x)y12(x)y24(x) = (b4 − b1)κ2(x)y12(x)y24(x), x ∈ [0, l]. (2.34) Then we have y′23(x) = √ α3 y′13(x) = √ α3 (b3 − b1)κ2(x)y12(x)y23(x) = α3(b3 − b1)κ2(x)y12(x)y13(x) = (b3 − b2)κ2(x)y12(x)y13(x), x ∈ [0, l], (2.35) y′24(x) = −√α4 y′14(x) = −√α4 (b4 − b1)κ2(x)y12(x)y24(x) = α4(b4 − b1)κ2(x)y12(x)y14(x) = (b4 − b2)κ2(x)y12(x)y14(x), x ∈ [0, l]. (2.36) From (2.25) and (2.32), we obtain y′12(x) = βv(x)v′(x) y12(x) = ρβκ2(x)v2(x), x ∈ [0, l]. (2.37) Further, taking into account (2.26)–(2.29), we have y13(x)y23(x) + y14(x)y24(x) = ( √ α3 −√α4α 2)v2(x), x ∈ [0, l]. (2.38) Note that in virtue of (2.11) the equality ρ = √ (b3 − b2)(b3 − b1) = √ (b4 − b2)(b4 − b1) (2.39) is true. Therefore, since b4 < b1 < b3, then ρβ = ρ(β3 + β4α 2) = √ (b3 − b2)(b3 − b1) b2 − b1 b3 − b1 + √ (b4 − b2)(b4 − b1) b2 − b1 b4 − b1 α2 = (b2 − b1) (√ b3 − b2 b3 − b1 − √ b4 − b2 b4 − b1 α2 ) = (b2 − b1) (√ α3 −√α4 α2 ) . (2.40) 50 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations Now the relations (2.37)–(2.40) yield y′12(x) = (b2 − b1)κ2(x)(y13(x)y23(x) + y14(x)y24(x)), x ∈ [0, l]. (2.41) Since α3α4 = 1, then in virtue of (2.26)–(2.30), (b4 − b3)κ2(x)(y13(x)y14(x) + y23(x)y24(x)) = (b4 − b3)κ2(x)(y13(x)y14(x)−√α3 y13(x) √ α4 y14(x)) = 0 = y′34(x). (2.42) Now the equalities (2.41), (2.33), (2.34), (2.35), (2.36), (2.42) imply that the functions y12, y13, y14, y23, y24, y34 satisfy the equations of system (2.5). Further, since c12 > 0, then y13(0) = v(0) = F−1(ρK2(0)) = F−1(0) = c13, (2.43) y12(0) = √ c2 12 + β(v2(0)− c2 13) = c12, (2.44) y14(0) = αv(0) = c14 c13 c13 = c14, (2.45) y23(0) = √ α3 y13(0) = √ α3 c13 = c23, (2.46) y24(0) = −√α4 y14(0) = −√α4 c14 = c24, (2.47) y34(0) = 0 = c34. (2.48) Thus the functions y12(·), y13(·), y14(·), y23(·), y24(·), y34(·) satisfy also the initial data of system (2.5). General uniqueness theorems for the initial problem imply that this system has the unique solution on [0, l]. We will show the way of finding expressions for yks(·), k, s ∈ 1, . . . , n (2.25) – (2.31) as solutions of the corresponding system of differential equations (2.5). Let now the functions y12(·), y13(·), y14(·) y23(·), y24(·), y34(·) ∈ AC[0, l] sat- isfy problem (2.5). Multiply equation (2.33) by (b3 − b2)y13(x) and equation (2.35) by (b3− b1)y23(x). After summarizing the results, we arrive at the relation y′23(x)y23(x)− α3y ′ 13(x)y13(x) = 0, integrating which we obtain y23(x) = √ c2 23 + α3(y2 13(x)− c2 13). (2.49) Taking into account (2.15), we have (2.28). Following the same procedure with (2.34) and (2.36), we get y24(x) = √ c2 24 + α4(y2 14(x)− c2 14). After using (2.15), we obtain y24(x) = −√α4 y14(x). (2.50) Use (2.49) and (2.50) for the equations (2.33) and (2.34) to get y′13(x) = κ2(x)(b3 − b1)y12(x) √ α3 y13(x), (2.51) y′14(x) = κ2(x)(b4 − b1)y12(x) √ α4 y14(x). (2.52) Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 51 A.A. Lunyov and E.V. Oliynyk Express κ2(x)y12(x) from (2.51) and taking into account (2.39) equate the ob- tained relations y′13(x) y13(x) = y′14(x) y14(x) . (2.53) Thus (2.53) yields y14(x) = c14 c13 y13(x) = αy13(x). (2.54) Thus the correctness of equality (2.27) is confirmed. After substituting it into (2.50), the correctness of (2.29) is also confirmed. By using the obtained results, we transform the equations (2.41) and (2.33), subject to (2.40), y′12(x) = κ2(x)(b2 − b1)y2 13(x) (√ α3 − α2√α4 ) = κ2(x)ρβy2 13(x); (2.55) y′13(x) = κ2(x)ρy12(x)y13. (2.56) Whence we obtain that y′12(x) y13(x)β = y′13(x) y12(x) (2.57) or y12(x) = √ c2 12 + β(y2 13(x)− c2 13). (2.58) Thus (2.25) takes place. Substituting the obtained expressions for y12(x) (2.25) and y23(x) (2.28) into the equation for y′13(x) (2.33), we obtain y′13(x) = κ2(x)ρy13(x) √ c2 12 + β(y2 13(x)− c2 13), (2.59) or, using the notation (2.19), y′13(x) y13(x) √ c2 12 + β(y2 13(x)− c2 13) = ρκ2(x). (2.60) It is easy to see that (2.60), subject to notation (2.18), becomes (2.26). Corollary 2.3. In the conditions of Theorem 2 suppose c12 = 0 which determines the form of the matrix C in (2.1) in the following way: iC =   0 0 c13 c14 0 0 c23 c24 c13 c23 0 0 c14 c24 0 0   . 52 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations Then for the functions y12(·), y13(·) the following representations take place: y12(x) = c13 √ β tan(z(x)), β > 0, (2.61) y13(x) = c13 cos(z(x)) , β > 0, (2.62) or y12(x) = c13 √ β, β < 0, (2.63) y13(x) = 0, (2.64) or y12(x) = c13 √ β th(z(x)), β < 0, (2.65) y13(x) = c13 ch(z(x)) , β < 0, (2.66) where z(x) = c13ρ √ β K2(x). (2.67) P r o o f. Consider the case β > 0. The definition of the function F (·) and formula (2.26) imply that ρK2(x) = F (y13(x)) = 1√ β y13(x)∫ c13 du u √ u2 − c2 13 . (2.68) Then (2.68) has the form −c13 √ β rhoK2(x) = arcsin ∣∣∣∣ c13 y13(x) ∣∣∣∣− π 2 . Using notation (2.67), we obtain − sin(z(x)) = sin ( arcsin ∣∣∣∣ c13 y13(x) ∣∣∣∣− π 2 ) = sin ( arcsin ∣∣∣∣ c13 y13(x) ∣∣∣∣ ) cos π 2 − cos ( arcsin ∣∣∣∣ c13 y13(x) ∣∣∣∣ ) sin π 2 = − √ 1− c2 13 y2 13(x) . Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 53 A.A. Lunyov and E.V. Oliynyk Suppose z(x) is such that sin(z(x)) and cos(z(x)) are positive, then we ob- tain (2.62). Substituting (2.62) into (2.25)–(2.30), we will come to the form of (2.61) for y12(·) and to the corresponding expressions for the functions y14(·), y23(·), y24(·), y34(·). In the case β < 0, in virtue of inequality (2.21), we obtain that y2 13(x)−c2 13 < 0. Thus, ρK2(x) = F (y13(x)) = 1√ β y13(x)∫ c13 du u √ c2 13 − u2 . (2.69) Whence it follows that −z(x) = ln (√ c2 13 − u2 + c13 y13(x) ) or √ c2 13 − y2 13(x) = y13(x) exp−z(x)−c13. As a result of transformations, we have y13(x) ( y13(x)(exp−2z(x) +1)− 2 exp−z(x) c13 ) = 0, i.e., either y13(x) = 0, which results in the solutions of (2.63)–(2.64), or y13(x) = 2c13 expz(x) +exp−z(x) , which corresponds to the solutions in the forms of (2.65) and (2.66). E x a m p l e 2.4. Let γ+ =   0 0 2i i 0 0 √ 2i −√2i −2i −√2i 0 0 −i √ 2i 0 0   , σ2 =   0 0 0 0 0 b 0 0 0 0 2b 0 0 0 0 −b   , b > 0. (2.70) Then the pair {a(x), γ(x)}, where a(x) = γ2(x), is the solution of system (1.2) if and only if γ(x) =   0 √ 2 tg(2bx) 2 cos(2bx) 1 cos(2bx) −√2 tg(2bx) 0 √ 2 cos(2bx) − √ 2 cos(2bx) − 2 cos(2bx) − √ 2 cos(2bx) 0 0 − 1 cos(2bx) √ 2 cos(2bx) 0 0   . (2.71) 54 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations 3. Case of Cubic Dependency of a(x) from γ(x) Remind the statement proved in [7]. Theorem 3.1. Let γ+ = diag(l1In1 , . . . , lrInr), n1 + . . . nr = n, (3.1) where l1, . . . , lr are different real numbers. Then for every solution {a(·), γ(·)} of system (1.2) there exists a unique uni- tary matrix function U ∈ AC([0, l]; Cn×n) such that γ(x) = U(x)γ+U∗(x), x ∈ [0, l], U(0) = In, (3.2) and the matrix function C(·) := −iU−1(·)U ′(·) is self-adjoint and has the zero block diagonal relative to the decomposition Cn = Cn1 ⊕ . . .⊕ Cnr . Besides, a(x) = U(x)A(x)U∗(x), x ∈ [0, l], (3.3) where A(·) = diag(A1(·), . . . , Ar(·)) = A∗(·), (3.4) Aj ∈ L1([0, l];Cnj×nj ), j ∈ {1, . . . , r}. (3.5) Moreover, for B(x) := U∗(x)σ2U(x), [C(x), γ+] = [A(x), B(x)], x ∈ [0, l], (3.6) B′(x) = i[B(x), C(x)], x ∈ [0, l], B(0) = σ2 (3.7) take place. Conversely, if for the self-adjoint matrix functions A,C ∈ L1([0, l]; Cn×n), B ∈ AC([0, l]; Cn×n), (3.8) (3.4), (3.5), (3.6), (3.7) take place, and U ∈ AC([0, l]; Cn×n) is the solution of the initial problem U ′(x) = iU(x)C(x), x ∈ [0, l], U(0) = In, (3.9) then U(x) is unitary for every x ∈ [0, l], B(x) = U∗(x)σ2U(x), x ∈ [0, l], (3.10) and the pair {a(·), γ(·)}, given by (3.2), (3.3), is the solution of system (1.2). Theorem provides the following step-by-step procedure [7] for finding all the solutions of system (1.2): 1. Choose an orthonormal basis in Cn, in which the matrix γ+ has the diagonal form (3.1). Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 55 A.A. Lunyov and E.V. Oliynyk 2. Choose an arbitrary matrix function A(·) satisfying conditions (3.4)–(3.5). 3. Solve the Cauchy problem for the nonlinear system of ordinary differen- tial equations on the matrix B obtained from (3.6), (3.7) in the previous remark. 4. If it has the global solution on the segment [0, l], then we calculate the matrix C(x) by the formula Cjk(x) = (lk − lj)−1(Aj(x)Bjk(x)−Bjk(x)Ak(x)), x ∈ [0, l], j, k ∈ {1, . . . , r}, j 6= k, (3.11) supposing that its diagonal blocks are equal to zero. 5. Find U(·) as a unique solution of the Cauchy problem (3.9) for the system of linear ordinary differential equations. 6. Finally, we obtain the solution {a(·), γ(·)} of system (1.2) by the formu- las (3.2), (3.3). Using Theorem 3.1, we will show how to find the explicit form of the matrix B(x) for the case n = 4 and a(x) = κ(x)γ3(x), where κ(x) is a real function such that κ ∈ L1[0, l]. Theorem 3.2. Let n = 4, λ1, . . . , λ4 be different real numbers such that λ3 and λ4 are between λ1 and λ2, γ+ = diag(λ1, . . . , λ4), σ2 = (b(0) jk )4j,k=1 = iβjk, βjk > 0, βjk ∈ R as j 6= k, b (0) jj = β1λj + β0, j ∈ {1, 4}, C(x) = (cjk(x))4j,k=1, besides cjj = 0, a(x) = κ(x)γ3(x), where a(x) is a matrix function and κ(x) ∈ L1[0, l] is a real function, x ∈ [0, l], and the matrix B is such that B(x) = (bjk(x))4j,k=1 = B∗(x) as j 6= k. Let further αj = √ λ2 − λj λj − λ1 , βj = λ2 − λ1 λj − λ1 , j = 3, 4, (3.12) α = √ (λ4 − λ1)(λ2 − λ4) (λ1 + λ2 + λ4)√ (λ3 − λ1)(λ2 − λ3) (λ1 + λ2 + λ3) , (3.13) 56 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations ψ(y) = √√√√β2 12 − β3(y2 − β2 13)− β4β2 14 [( y β13 )2α − 1 ] , (3.14) F (y) = y∫ β13 dt tψ(t) . (3.15) Then the elements of the matrix B(x) from (3.10) are given by bjk(x) = i exp −iβ1·(λ3 j−λ3 k) x∫ 0 κ(t)dt yjk(x), j 6= k, (3.16) where the real functions yjk(·) (j 6= k) are given by the equalities y12(x) = ψ(y13(x)), (3.17) y13(x) = F−1  √ (λ3 − λ1)(λ2 − λ3) x∫ 0 κ(t)dt   , (3.18) y14(x) = β14 ( y13(x) β13 )α , (3.19) y2j(x) = αjy1j(x), (j = 3, 4), (3.20) y34(x) = 0, (3.21) ykj(·) = yjk(·), (j 6= k). (3.22) Here F−1(·) is a function inverse to the monotonously increasing function F (·). P r o o f. (3.6) yields the relation cjk(x) = −κ(x)djkbjk(x), (3.23) where djk = λ3 j−λ3 k λj−λk = λ2 j + λjλk + λ2 k. Substitute (3.23) into (3.7), then b′jk(x) = −iκ(x)djk(b (0) jj − b (0) kk )bjk(x)− iκ(x) 4∑ l=1,l 6=k (dkl − djl)bjl(x)blk(x), (3.24) where j 6= k, and djk(b (0) jj − b (0) kk ) = β1(λ3 j − λ3 k). It is easy to see that dkl − djl = λ2 k + λkλl + λ2 l − λ2 j − λjλl − λ2 l = (λk − λj)(λj + λk + λl). Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 57 A.A. Lunyov and E.V. Oliynyk Let bjk(x) be given by (3.16). Then    y′jk(x) = κ(x) 4∑ l=1,l 6=j,k (dkl − djl)yjl(x)ylk(x), yjk(0) = βjk. (3.25) Use the fact that yjk(x) are real and y34(x) = 0. Then β34 = 0, yjk(x) = ykj(x), as 1 ≤ j < k ≤ 4, and the system has the form y′12 = κ(x)(d13 − d23)y13y23 + κ(x)(d14 − d24)y14y24, (3.26) y′13 = κ(x)(d23 − d12)y12y23, (3.27) y′23 = κ(x)(d12 − d13)y12y13, (3.28) y′14 = κ(x)(d24 − d12)y12y24, (3.29) y′24 = κ(x)(d12 − d14)y12y14. (3.30) The condition y34(x) = 0 implies 0 = κ(x)(d13 − d14)y13y14 + (d23 − d24)y23y24. (3.31) It follows from (3.27) and (3.28) that (d23 − d12)(y2 23(x)− β2 23) = (d12 − d13)(y2 13(x)− β2 13) (3.32) or (λ3 − λ1)(y2 23(x)− β2 23) = (λ2 − λ3)(y2 13(x)− β2 13). (3.33) The restriction on λj , where j = 1, 4, follows from the relation (λ3 − λ1)β2 23 = (λ2 − λ3)β2 13, (3.34) i.e., (λ3 − λ1)(λ2 − λ3) > 0, thus λ3 is between λ1 and λ2. Therefore, y23(x) = √ λ2 − λ3 λ3 − λ1 y13(x). (3.35) Analogously, (3.29) and (3.30) imply that y24(x) = √ λ2 − λ4 λ4 − λ1 y14(x) (3.36) if (λ4 − λ1)β2 24 = (λ2 − λ4)β2 14, and thus λ4 is between λ1 and λ2. Taking into account (3.12), we write equality (3.31) in the form (λ1 + λ3 + λ4 + α3α4(λ2 + λ3 + λ4)) y13(x)y14(x) = 0, (3.37) 58 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations besides, β23 = α3β13, β24 = α4β14. Thus y2j(x) = αjy1j(x) for j = 3, 4. From (3.26), (3.27), (3.29), we find y2 12(x)− β2 12 = −β3(y2 13(x)− β2 13)− β4(y2 14(x)− β2 14). (3.38) So the equations (3.27) and (3.29) become y′13 = κ(x)(d23 − d12)α3y12y13; (3.39) y′14 = κ(x)(d24 − d12)α4y12y14. (3.40) Since y′14 y14 = α4 α3 (d24 − d12) (d23 − d12) y′13 y13 , then denoting α = (d24 − d12)α4 (d23 − d12)α3 (which is equi- valent to (3.13)), we search y14(x) (subject to the initial conditions) in the form y14(x) = β14 ( y13(x) β13 )α . Substitute y12(x) = ψ(y13(x)) (3.41) into (3.38), where ψ(y13(x)) = √√√√β2 12 − β3(y2 13(x)− β2 13)− β4β2 14 (( y13(x) β13 )2α − 1 ) . (3.42) By using (3.39), we can find y′13(x) = κ(x)ψ(y13(x))y13(x). Since F (y) is represented in the form (3.15), then y13(x) = F−1  √ (λ3 − λ1)(λ2 − λ3) x∫ 0 κ(t)dt   . Thus, in the case n = 4 and cubic dependency of a(x) from γ(x), the elements of the matrix B(x) are expressed in terms of elliptic functions. Corollary 3.3. In the conditions of Theorem 3 we suppose λ1 = −a, λ2 = a, λ3 = −b, λ4 = b, where a, b ∈ R and the condition 0 < a < 3b is fulfilled, moreover, β2 13 = 1 2 , β2 14 = 2, β2 12 = 3ab− a2 a2 − b2 , then the solutions yjk(x) as j 6= k, Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 59 A.A. Lunyov and E.V. Oliynyk (3.17)–(3.20), are given by y12(x) = −i √ 2a a + b cn(z(x) + N, k)dn(z(x) + N, k) sn(z(x) + N) , (3.43) y13(x) = sn(z(x) + N, k), (3.44) y14(x) = 1 sn(z(x) + N, k) , (3.45) y23(x) = k sn(z(x) + N, k), (3.46) y24(x) = 1 k sn(z(x) + N, k) , (3.47) where k2 = a + b a− b , z(x) = −i √ 2a(a− b) x∫ 0 κ(t)dt, (3.48) N = 1√ 2∫ 0 dt√ (1− t2) (1− k2t2) . (3.49) P r o o f. From (3.18), we obtain √ (a− b)(a + b) x∫ 0 κ(t)dt = F (y13(x)). (3.50) Applying (3.14), (3.15) and taking into account that under the given choice of λj , where j = 1, 4, the value of α = −1 (which is evident from (3.13)), we have F (y13(x)) = y13(x)∫ β13 dt√ 2a b− a t4 + 4a2 a2 − b2 t2 − 2a b + a = i √ a + b 2a y13(x)∫ 1√ 2 dt√ a + b a− b t4 + 2a a− b t2 + 1 = i √ a + b 2a y13(x)∫ 1√ 2 dt√ (1− t2) ( 1− a + b a− b t2 ) . (3.51) 60 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 On Integration of One Class of Systems of Lax-Type Equations Now relation (3.50) can be expressed as −i √ 2a(a− b) x∫ 0 κ(t)dt = y13(x)∫ 1√ 2 dt√ (1− t2) ( 1− a + b a− b t2 ) , (3.52) i.e., taking into account (3.48), z(x) = y13(x)∫ 1√ 2 dt√ (1− t2) (1− k2 t2) (3.53) or z(x) + 1√ 2∫ 0 dt√ (1− t2) (1− k2 t2) = y13(x)∫ 0 dt√ (1− t2) (1− k2 t2) . (3.54) In view of the notation and definition of elliptic functions, we have z(x) + N = y13(x)∫ 0 dt√ (1− t2) (1− k2 t2) , (3.55) namely, y13(x) = sn(z(x) + N, k). (3.56) From (3.17) and (3.14), we obtain y12(x)= 1 sn(z(x) + N) ( −i √ 2a a + b √ (1− sn2(z(x) + N)(1− k2sn2(z(x) + N)) ) = −i √ 2a a + b cn(z(x) + N, k)dn(z(x) + N, k) sn(z(x) + N) . (3.57) Substituting the values of λj , as j = 1, 4, we have that α3 = k, and α4 = 1 k , and then (3.20) implies that y23(x) = α3y13(x) = k sn(z(x) + N, k) and y24(x) = α4y14(x) = 1 k sn(z(x) + N, k) . Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 61 A.A. Lunyov and E.V. Oliynyk References [1] V.Ye. Zaharov, S.V. Manakov, S.P. Novikov, and L.P. Pitayevsky, Soliton Theory. Nauka, Moscow, 1980. (Russian) [2] V.A. Zolotarev, Spectral Analisys of Non-selfadjoint Commutative Operator Sys- tems and Nonlinear Differential Equations. — Teor. Funktsij, Funkts. Analiz, i ih pril. Kharkov, Resp. sb., 40 (1983), 68–71. (Russian) [3] V.A. Zolotarev, Time Cones and Functional Model on Riemann Surface. — Mat. Sb. 181 (1990), No. 7, 965–994. (Russian) [4] V.A. Zolotarev, Analitical Methods of Spectral Representations of Non-selfadjoint and Non-unitary Operators. KhNU, Kharkov, 2003. (Russian) [5] P.D. Lax, Integrals of Nonlinear Equations of Evolution and Solitary Waves. — Commun. Pure Appl. Math. 21 (1968), 467–490. [6] M.S. Livs̆ic and A.A. Yantsevich, Operator Colligations in Hilbert Spaces. Winston, Washington, D. C. (distributed by Wiley, New York), 1979. [7] A.A. Lunyov and E.V. Oliynyk, On One Class of System of Lax-type Equations. — UMV 10 (2013), No. 4, 507–531. (Russian) 62 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1