Electron and hole spectra in quantum wire with two quantum dots in the electric field

The energy spectrum of electron and hole is investigated in a complicated nanoheterosystem consisting of two cylindrical semiconductor quantum dots placed into semiconductor quantum wire. Quantum dots are separated by barrier-layer, which is under the action of a constant electric field. The depen...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Makhanets, O., Gryschyk, A., Dovganiuk, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2007
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118061
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electron and hole spectra in quantum wire with two quantum dots in the electric field / O. Makhanets, A. Gryschyk, M. Dovganiuk // Condensed Matter Physics. — 2007. — Т. 10, № 1(49). — С. 69-74. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118061
record_format dspace
spelling irk-123456789-1180612017-05-29T03:04:32Z Electron and hole spectra in quantum wire with two quantum dots in the electric field Makhanets, O. Gryschyk, A. Dovganiuk, M. The energy spectrum of electron and hole is investigated in a complicated nanoheterosystem consisting of two cylindrical semiconductor quantum dots placed into semiconductor quantum wire. Quantum dots are separated by barrier-layer, which is under the action of a constant electric field. The dependencies of electron and hole energies on geometric parameters of quantum dots and electric field intensity are analysed. Дослiджено енергетичний спектр електрона i дiрки в складнiй наногетеросистемi, що складається з двох цилiндричних напiвпровiдникових квантових точок, розташованих у напiвпровiдниковому квантовому дротi. Квантовi точки роздiленi шаром-бар’єром, до якого прикладене постiйне електричне поле. Проаналiзовано залежностi енергiй електрона i дiрки вiд геометричних розмiрiв квантових точок i величини напруженостi електричного поля. 2007 Article Electron and hole spectra in quantum wire with two quantum dots in the electric field / O. Makhanets, A. Gryschyk, M. Dovganiuk // Condensed Matter Physics. — 2007. — Т. 10, № 1(49). — С. 69-74. — Бібліогр.: 12 назв. — англ. 1607-324X PACS: 73.21.Fg, 73.21.Hb, 73.21.La DOI:10.5488/CMP.10.1.69 http://dspace.nbuv.gov.ua/handle/123456789/118061 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The energy spectrum of electron and hole is investigated in a complicated nanoheterosystem consisting of two cylindrical semiconductor quantum dots placed into semiconductor quantum wire. Quantum dots are separated by barrier-layer, which is under the action of a constant electric field. The dependencies of electron and hole energies on geometric parameters of quantum dots and electric field intensity are analysed.
format Article
author Makhanets, O.
Gryschyk, A.
Dovganiuk, M.
spellingShingle Makhanets, O.
Gryschyk, A.
Dovganiuk, M.
Electron and hole spectra in quantum wire with two quantum dots in the electric field
Condensed Matter Physics
author_facet Makhanets, O.
Gryschyk, A.
Dovganiuk, M.
author_sort Makhanets, O.
title Electron and hole spectra in quantum wire with two quantum dots in the electric field
title_short Electron and hole spectra in quantum wire with two quantum dots in the electric field
title_full Electron and hole spectra in quantum wire with two quantum dots in the electric field
title_fullStr Electron and hole spectra in quantum wire with two quantum dots in the electric field
title_full_unstemmed Electron and hole spectra in quantum wire with two quantum dots in the electric field
title_sort electron and hole spectra in quantum wire with two quantum dots in the electric field
publisher Інститут фізики конденсованих систем НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/118061
citation_txt Electron and hole spectra in quantum wire with two quantum dots in the electric field / O. Makhanets, A. Gryschyk, M. Dovganiuk // Condensed Matter Physics. — 2007. — Т. 10, № 1(49). — С. 69-74. — Бібліогр.: 12 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT makhanetso electronandholespectrainquantumwirewithtwoquantumdotsintheelectricfield
AT gryschyka electronandholespectrainquantumwirewithtwoquantumdotsintheelectricfield
AT dovganiukm electronandholespectrainquantumwirewithtwoquantumdotsintheelectricfield
first_indexed 2025-07-08T13:17:59Z
last_indexed 2025-07-08T13:17:59Z
_version_ 1837084896952057856
fulltext Condensed Matter Physics 2007, Vol. 10, No 1(49), pp. 69–74 Electron and hole spectra in quantum wire with two quantum dots in the electric field O.Makhanets, A.Gryschyk, M.Dovganiuk Fedkovych Chernivtsi National University, 2, Kotsyubinskoho Str., Chernivtsi, 58012, Ukraine∗ Received September 4, 2006 The energy spectrum of electron and hole is investigated in a complicated nanoheterosystem consisting of two cylindrical semiconductor quantum dots placed into semiconductor quantum wire. Quantum dots are separated by barrier-layer, which is under the action of a constant electric field. The dependencies of electron and hole energies on geometric parameters of quantum dots and electric field intensity are analysed. Key words: quantum wire, quantum dot, energy spectrum PACS: 73.21.Fg, 73.21.Hb, 73.21.La 1. Introduction Artificial atoms or quantum dots (QDs) constructed from semiconductors are expected to pro- vide the basis for future generations of device technologies such as threshholdless lasers and ultra- dense memories. When several quantum dots are connected to each other, they provide remarkable phenomena due to the interplay of electron correlations, interference effects, etc, which depend on how the dots are arranged: e.g. double quantum dots coupled in series or parallel [1–5]. In this context double quantum dots are of particular interest from two different viewpoints such as implementation of quantum bits (qubit) [6,7] and a model system for molecular binding under controlled conditions [8,9]. ” ”0”1” ”1” 0 h 1 h 2 ” ”0 ” ”0 Z U(z) ”2” ”2” ”2” ”2” -h1 +h2 F U0 Eg HgS HgSCdS HgSCdS e U0 h CdS Figure 1. Geometrical scheme of a nanosystem and the dependence of electron and hole potential energy on z variable. At present, of particular interest are the double quantum dots embedded into quantum nanowires. Such systems have already been created and are being intensively investigated experimentally [10,11]. The theory of spectra and wave functions of quasi- particles (electrons, holes, excitons) in quantum dots embedded into the quantum wires is only at the start of development [12]. Such combined nanoheterosys- tems are rather complicated for mathematical de- scription due to the complicated fitting conditions for the wave functions of quasiparticles. In this paper we are going to study the stationary energy states of electron and hole in a nanoheterosys- tem consisting of two semiconductor quantum dots (of different size) embedded into the cylindrical quan- tum wire. The thin barrier-layer separating quantum dots are under the action of a constant electric field of a fixed intensity (~F ), directed along the axial axis of nanohetrosystem (figure 1). ∗E-mail: theorphys@chnu.cv.ua c© O.Makhanets, A.Gryschyk, M.Dovganiuk 69 O.Makhanets, A.Gryschyk, M.Dovganiuk 2. The theory of electron (hole) energy spectrum in cylindri cal quantum wire with two quantum dots inside The complicated semiconductor cylindrical quantum wire (“0”), containing two quantum dots of the same material (“1”), separated by a thin layer of another material (“0”) is under research. The radius of QW (ρ0), the height of QDs (h1 and h2), respectively and thickness of the layer separating QDs (∆) are assumed to be fixed (figure 1). A complicated quantum wire is placed into the external medium forming the infinite potential barriers for the electron (hole). The electron (hole) effective masses are different in different parts of a nanosystem: µeh(z) = { µeh 0 , medium “0”, µeh 1 , medium “1”. (1) It is also assumed that the lattice constants a0 and a1 of the media “0” and “1” are to be close in magnitude. For example, the computer calculations are performed for the nanosystem created at the base of β − HgS and β − CdS crystals where the lattice constants are so close that (a1 − a0)/a0 6 1%. Since the interfaces between different parts of nanosystem are rather straight, it is possible to use the approximation of rectangular potential energies for the electron and hole. Taking this into account as well as the fact that the constant electric field with intensity of ~F is applied to the barrier-layer (“0”) like it is shown in figure 1, the potential energy can be written in the form U e (ρ, ϕ, z) =          U e 0 , z < −h1 and z > ∆ + h2 , 0, −h1 6 z 6 0 and ∆ 6 z 6 ∆ + h2 , U e 0 − eFz, 0 6 z 6 ∆, (2) Uh (ρ, ϕ, z) =            −EHgS g − Uh 0 , z < −h1 and z > ∆ + h2 , −EHgS g , −h1 6 z 6 0 and ∆ 6 z 6 ∆ + h2 , −EHgS g − Uh 0 + eFz, 0 6 z 6 ∆ , (3) where e is the electron charge, U eh 0 = V eh 0 −V eh 1 , V e 0 , V e 1 (V h 0 , V h 1 ) are the electron (hole) potential energies in the corresponding media “0” and “1”, taken respectively in vacuum. The analytical calculation of electron and hole energy spectra and wave functions are equal, since the further formulas are presented for the electron omitting index e. In order to investigate the electron quantum states, it is necessary to solve the Schrodinger equation. _ HΨ(~r) = EΨ(~r) (4) with Hamiltonian _ H = − ~ 2 2 ~∇ 1 µ (z) ~∇ + U (ρ, ϕ, z) . (5) Taking into account the cylindrical symmetry it is convenient to write the wave function Ψ (r̃) as in [12] Ψnρm (~r) = ( −πρ2 0Jm−1 ( χnρm ) Jm+1 ( χnρm ))−1/2 Jm ( χnρm ρ0 ρ ) eimϕϕ (z) , (6) where m = 0;±1;±2; . . . is the magnetic quantum number, Jm [ (χnρm)/ρ0ρ ] is Bessel function of the whole order, χnρm are roots of Bessel function (nρ is radial quantum number fixing the number of Bessel function root at the fixed m). 70 Electron and hole spectra in quantum wire Setting the wave function (6) in Schrodinger equation (4), the variables are separated and for z-th term of wave function there is obtained the equation ∂2 ∂z2 ϕ (z) + ϕ (z) [ 2µ (z) ~2 (E − U (ρ, ϕ, z)) − χ2 nρm ρ2 0 ] = 0. (7) The solutions of equation (7) with notations k2 0 = 2µ0 ~2 E − χ2 nρm ρ2 0 , k2 1 = 2µ1 ~2 (U0 − E) + χ2 nρm ρ2 0 for different parts of a nanosystem are as follows: ϕ (z) =                      A+ek0z, z < −h1 , B+eik1z + B−e−ik1z, −h1 6 z 6 0 , C+Ai[−ξ (z + zB)] + C−Bi[−ξ (z + zB)], 0 6 z 6 ∆ , D+eik1z + D−e−ik1z, ∆ 6 z 6 ∆ + h2 , E−e−k0z, z > ∆ + h2 (8) here Ai (z) , Bi (z) are Airy functions of the first and second kind and ξ = ( 2eFm ~2 )1/3 , zB = E eF . Using the conditions of a wave function and density of probability current continuity at the media interfaces of a nanosystem (z = −h1, z = 0, z = ∆, z = ∆ + h2) and the condition of wave function normalization ∞ ∫ −∞ |ϕ (z)| 2 dz = 1, (9) one can obtain analytical expressions for the coefficients A+, B±, C±,D±, E− (equation (8)) and a dispersion equation for defining the electron energies in a nanoheterosystem (the respective expressions are not presented because they are rather sophisticated). We should note that the electron (hole) wave function and its energy are characterized by three quantum numbers: nρmnz (Ψeh nρmnz (~r) , Eeh nρmnz ). The axial quantum number (nz) numerates the solutions of dispersion equa- tion at the fixed nρ and m quantum numbers. 3. Discussion of results The computer calculations of electron (hole) energy spectrum is performed for the nanoheterosys- tem created at the base of semiconductor crystals β − HgS (“1”) and β − CdS (“0”). The results of calculating the electron and hole energy (Eeh nρmnz ) (without the electric field) as a function of the height of the second QD (h2) at the fixed nρ = 1, radius of QW:ρ0 = 8aHgS, height of the other QD: h1 = 7aHgS and width of the potential barrier: ∆ = 2aCdS are presented in figure 2. Figure 2 proves that at h2 = 0 there are three (two) electron (hole) energy levels in a nanosys- tem, coinciding (as it should be) with the levels arising in QD (HgS) with the height h1 embedded into QW (CdS). The increase of h2 height causes the appearance of new energy levels becoming smaller and creating anticrossings. They are caused by the splitting of the levels, having the origin of both potential wells, accounting for their interaction through the potential barrier with finite height and width. 71 O.Makhanets, A.Gryschyk, M.Dovganiuk 0 10 20 30 40 50 400 600 800 1000 1200 e 4 2 2 m eV 104 113 112 111 103 102 E 103 E 111 E 101 m=0 n z =1n =1 h 2 , a HgS E n m n z , -600 -500 -400 -300 0,00 0 10 20 30 40 50 112 111 104 103 102 n z =1m=0n =1 2 E 111 2 E 101 h m eV E n m n z , Figure 2. Dependences of electron and hole energies on the height of second QD (h2) at nρ = 1, ρ0 = 8aHgS, h1 = 7aHgS, ∆ = 2aCdS, F = 0. The number of energy levels is determined by the volume of quantum wells of the system. It should be mentioned that at the equal geometric parameters, the number of electron energy states is much bigger than of the hole ones. This is obviously caused by the fact that the depth of a potential well for the electron (U e 0) is bigger than twice the respective magnitude for the hole (Uh 0 ). From the general analysis of the dispersion equation it is clear that all electron and hole energy levels (except the ground level) are twice degenerated in respect to the magnetic quantum number m. Besides, as one can see in figure 2 there is a casual degeneration of energy levels because the levels with different nz and m are crossing at the variation of h2. The application of the electric field ~F does not qualitatively change the behavior of electron (hole) energy spectrum but causes the shift of all energy levels into the region of smaller energies, to the small shift of all anticrossings into the region of smaller magnitudes of h2 and to the varying of the splitting of energy levels with equal symmetry ∆E (e, h) n′ z nρ m nz . It is seen in figure 3 a,b, where there are presented the dependences of electron (a) and hole (b) energies on the height of the quantum dot h2 (in the range of 2 − 9 aHgS) at the fixed h1 = 7aHgS, ∆ = 2aCdS, ρ0 = 8aHgS when there is no electric field F = 0 (solid curves) and for the electric field with the intensity F = 580 MV/m (dash curves). In the figures one can see that the increase of intensity ~F causes the increase of the splitting ∆E (e, h) n′ z nρ m nz . The latter is bigger and increases faster with an increase of the anticrossings in the energy scale of quantum well. It should be mentioned that the increase of the splitting for the higher energy levels is capable of reaching 100 meV. Such a behavior of energy spectrum is clear from physical viewpoint. Really, the increase of the electric field intensity causes the change of potential barrier profile in such a way that, on the one hand, its effective thickness becomes smaller, i.e., its transparency increases, obviously increasing the interaction between quantum wells and, consequently, bringing to the increase of the splitting of the respective energy levels. On the other hand, the increase of transparency effectively increases the quantum well volume (the toned region 72 Electron and hole spectra in quantum wire 2 3 4 5 6 7 8 9 400 600 800 1000 1200 a e 2E' 101 2 E 101 E' 111 2 2E 111 4E' 103 4E 103 h 2 , a HgS m eV E n m n z , 2 3 4 5 6 7 8 9 -600 -500 -400 -300 -200 b 2 E' 101 E 101 2 2E' 111 2E 111 h 2 , a HgS h m eV E n m n z , Figure 3. Dependences of electron (a) and hole (b) energies on the height of quantum dot h2 at the fixed h1 = 7aHgS, ∆ = 2aCdS, ρ0 = 8aHgS when there is no electric field: F = 0 (solid curves) and for the electric field with intensity F = 580 MV/m (dash curves). 0 6 z 6 ∆+h2 in figure 1). On the one hand, it decreases the electron and hole energy and, on the other hand, causes the anticrossing arising at the smaller values of the second quantum dot (h2). The final remark is that even an inessential shift of electron and hole energy levels into the region of smaller energies at the increase of the electric field intensity ~F can essentially effect the binding and exciting energy of exciton in the system under research. The detailed calculation and analysis of exciton spectra are to be performed in future. References 1. Aono T., Eto M., Kawamura K. J. Phys. Soc. Jpn., 1998, 67, 1860. 2. Georges A., Meir Y. Phys. Rev. Lett. 1999, 82, 3508. 3. Aguado R., Langreth D.C. Phys. Rev. Lett., 2000, 85, 1946. 4. Izumida W., Sakai O. Phys. Rev. B, 2000, 62, 10260. 5. Aono T., Eto M. Phys. Rev. B, 2001, 63, 125327. 6. Hu X., Sarma S.D. Phys. Rev. A, 2000, 61, 062301. 7. Burkard G., Seelig G., Loss D. Phys. Rev. B, 2000, 62, 2581. 8. Partoens B., Peeters F. Europhys. Lett., 2001, 56, 86. 9. Amaha S., Austing D.G., Tokura Y., Muraki K., Ono K., Tarucha S. Solid State Commun., 2001, 119, 183. 10. Bjork M.T., Thelander C., Hansen A.E., Jensen L.E., Larsson M.W., Wallenberg L.R., Samuelson L. Nano Lett., 2004, 4, 1621. 11. Fasth C., Fuhrer A., Bjork M.T., Samuelson L. Nano Lett., 2005, 5, 1487. 12. Tkach N.V., Makhanets A.M. Fiz. Tv. Tela, 2005, 47, 550 (in Russian). 73 O.Makhanets, A.Gryschyk, M.Dovganiuk Спектри електрона та дiрки у квантовому дротi з двома квантовими точками в електричному полi О.М.Маханець, А.М.Грищук, М.М.Довганюк Чернiвецький нацiональний унiверситет iм. Юрiя Федьковича, вул. Коцюбинського 2, 58012, Чернiвцi Отримано 4 вересня 2006 р. Дослiджено енергетичний спектр електрона i дiрки в складнiй наногетеросистемi, що складається з двох цилiндричних напiвпровiдникових квантових точок, розташованих у напiвпровiдниковому кван- товому дротi. Квантовi точки роздiленi шаром-бар’єром, до якого прикладене постiйне електричне поле. Проаналiзовано залежностi енергiй електрона i дiрки вiд геометричних розмiрiв квантових точок i величини напруженостi електричного поля. Ключовi слова: квантовий дрiт, квантова точка, енергетичний спектр PACS: 73.21.Fg, 73.21.Hb, 73.21.La 74