Theory of relaxation for spontaneous emission of Bloch oscillation radiation

A theory for the spontaneous emission (SE) of radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity while undergoing scattering is presented. The Bloch electron is accelerated under the influence of superimposed constant external and internal inhomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Sokolov, V.N., Iafrate, G.J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2014
Schriftenreihe:Semiconductor Physics Quantum Electronics & Optoelectronics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/118233
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Theory of relaxation for spontaneous emission of Bloch oscillation radiation / V.N. Sokolov, G.J. Iafrate // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2014. — Т. 17, № 2. — С. 109-129. — Бібліогр.: 52 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118233
record_format dspace
fulltext
spelling irk-123456789-1182332017-05-30T03:05:35Z Theory of relaxation for spontaneous emission of Bloch oscillation radiation Sokolov, V.N. Iafrate, G.J. A theory for the spontaneous emission (SE) of radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity while undergoing scattering is presented. The Bloch electron is accelerated under the influence of superimposed constant external and internal inhomogeneous electric fields while radiating into a microcavity. The constant external electric field strength is chosen so that the emitted radiation lies in the terahertz spectral range. The quantum dynamics for the inhomogeneous field correction is obtained from a Wigner–Weisskopf-like long-time, time-dependent perturbation theory analysis based on the instantaneous eigenstates of the electric field-dependent Bloch Hamiltonian. It is shown that SE for the cavity-enhanced Bloch electron probability amplitude becomes damped and frequency shifted due to the perturbing inhomogeneity. The developed general quantum approach is applied to the case of elastic electron scattering due to SL interface roughness (SLIR). In the analysis, the interface roughness effects are separated into contributions from independent planar and cross-correlated neighboring planar interfaces; it is estimated that the crosscorrelated contribution to the SE relaxation rate is relatively small compared to the independent planar contribution. When analyzing the total emission power, it is shown that the degradation effects from SLIR can be more than compensated for by the enhancements derived from microcavity-based confinement tuning. 2014 Article Theory of relaxation for spontaneous emission of Bloch oscillation radiation / V.N. Sokolov, G.J. Iafrate // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2014. — Т. 17, № 2. — С. 109-129. — Бібліогр.: 52 назв. — англ. 1560-8034 PACS 72.10.Bg, 73.21.Cd, 73.50.Mx, 73.63.Hs http://dspace.nbuv.gov.ua/handle/123456789/118233 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A theory for the spontaneous emission (SE) of radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity while undergoing scattering is presented. The Bloch electron is accelerated under the influence of superimposed constant external and internal inhomogeneous electric fields while radiating into a microcavity. The constant external electric field strength is chosen so that the emitted radiation lies in the terahertz spectral range. The quantum dynamics for the inhomogeneous field correction is obtained from a Wigner–Weisskopf-like long-time, time-dependent perturbation theory analysis based on the instantaneous eigenstates of the electric field-dependent Bloch Hamiltonian. It is shown that SE for the cavity-enhanced Bloch electron probability amplitude becomes damped and frequency shifted due to the perturbing inhomogeneity. The developed general quantum approach is applied to the case of elastic electron scattering due to SL interface roughness (SLIR). In the analysis, the interface roughness effects are separated into contributions from independent planar and cross-correlated neighboring planar interfaces; it is estimated that the crosscorrelated contribution to the SE relaxation rate is relatively small compared to the independent planar contribution. When analyzing the total emission power, it is shown that the degradation effects from SLIR can be more than compensated for by the enhancements derived from microcavity-based confinement tuning.
format Article
author Sokolov, V.N.
Iafrate, G.J.
spellingShingle Sokolov, V.N.
Iafrate, G.J.
Theory of relaxation for spontaneous emission of Bloch oscillation radiation
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Sokolov, V.N.
Iafrate, G.J.
author_sort Sokolov, V.N.
title Theory of relaxation for spontaneous emission of Bloch oscillation radiation
title_short Theory of relaxation for spontaneous emission of Bloch oscillation radiation
title_full Theory of relaxation for spontaneous emission of Bloch oscillation radiation
title_fullStr Theory of relaxation for spontaneous emission of Bloch oscillation radiation
title_full_unstemmed Theory of relaxation for spontaneous emission of Bloch oscillation radiation
title_sort theory of relaxation for spontaneous emission of bloch oscillation radiation
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/118233
citation_txt Theory of relaxation for spontaneous emission of Bloch oscillation radiation / V.N. Sokolov, G.J. Iafrate // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2014. — Т. 17, № 2. — С. 109-129. — Бібліогр.: 52 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT sokolovvn theoryofrelaxationforspontaneousemissionofblochoscillationradiation
AT iafrategj theoryofrelaxationforspontaneousemissionofblochoscillationradiation
first_indexed 2025-07-08T13:35:57Z
last_indexed 2025-07-08T13:35:57Z
_version_ 1837086024865415168