Loosing thermodynamic stability in amorphous materials

The primary relaxation dynamics near the glass transformation temperature T g exhibits universal features in all glass formers, when showing two-level tunneling states (Low Temp. Phys. 35, 282 (2009)). Researchers have long searched for any signature of the underlying “true” ergodic–nonergodic trans...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Kokshenev, V.B.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2011
Назва видання:Физика низких температур
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118550
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Loosing thermodynamic stability in amorphous materials / V.B. Kokshenev // Физика низких температур. — 2011. — Т. 37, № 5. — С. 551–557. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The primary relaxation dynamics near the glass transformation temperature T g exhibits universal features in all glass formers, when showing two-level tunneling states (Low Temp. Phys. 35, 282 (2009)). Researchers have long searched for any signature of the underlying “true” ergodic–nonergodic transition emerging at a certain thermodynamic instability temperature Te . Here, the relaxation timescale for glass-forming materials is analyzed within a self-consistent thermodynamic cluster description combined with the cluster percolation concept. Exploring the ergodic hypothesis, its violation is found near a crossover from the Gaussian to non-Gaussian (Poisson) cluster-volume fluctuations, describing the finite-size fractal-cluster distributions. The transformation of the compact-structure “ergodic” clusters into hole-like glassy nanoclusters is attributed to the critical-size thermal fluctuations. The ergodic–nonergodic phase diagram showing Te is predicted in the model-independent form through the glass fragility parameter known for organic and inorganic liquids and amorphous solids. In all cases the ergodic-instability temperature is located below and close to the glass transformation temperature, whereas the distance between the two characteristic temperatures decreases with growing the material fragility.