Light depolarization by inhomogeneous linear birefringent media
The purpose of the article is to provide rigorous analysis of light depolarization by inhomogeneous linear birefringent media in single scattering case. The object under investigation is a lossless anisotropic crystalline slab with surface inhomogeneity. For the analysis we use the Mueller matrix...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2009
|
Назва видання: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/118607 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Light depolarization by inhomogeneous linear birefringent media / S.N. Savenkov, Y.A. Oberemok, V.V. Yakubchak, Y.V. Aulin, О.I. Barchuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2009. — Т. 12, № 1. — С. 86-90. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-118607 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1186072017-05-31T03:06:29Z Light depolarization by inhomogeneous linear birefringent media Savenkov, S.N. Oberemok, Y.A. Yakubchak, V.V. Aulin, Y.V. Barchuk, О.I. The purpose of the article is to provide rigorous analysis of light depolarization by inhomogeneous linear birefringent media in single scattering case. The object under investigation is a lossless anisotropic crystalline slab with surface inhomogeneity. For the analysis we use the Mueller matrix model of such class of media derived in [1], Cloude’s coherency matrix method and known single value depolarization metrics. Sample calculations are given for calcite CaCO₃, paratellurite TeO₂ and lithium niobate LiNbO₃. 2009 Article Light depolarization by inhomogeneous linear birefringent media / S.N. Savenkov, Y.A. Oberemok, V.V. Yakubchak, Y.V. Aulin, О.I. Barchuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2009. — Т. 12, № 1. — С. 86-90. — Бібліогр.: 10 назв. — англ. 1560-8034 PACS 42.25.Dd, 42.25.Ja, 42.81.-i http://dspace.nbuv.gov.ua/handle/123456789/118607 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The purpose of the article is to provide rigorous analysis of light
depolarization by inhomogeneous linear birefringent media in single scattering case. The
object under investigation is a lossless anisotropic crystalline slab with surface
inhomogeneity. For the analysis we use the Mueller matrix model of such class of media
derived in [1], Cloude’s coherency matrix method and known single value depolarization
metrics. Sample calculations are given for calcite CaCO₃, paratellurite TeO₂ and lithium
niobate LiNbO₃. |
format |
Article |
author |
Savenkov, S.N. Oberemok, Y.A. Yakubchak, V.V. Aulin, Y.V. Barchuk, О.I. |
spellingShingle |
Savenkov, S.N. Oberemok, Y.A. Yakubchak, V.V. Aulin, Y.V. Barchuk, О.I. Light depolarization by inhomogeneous linear birefringent media Semiconductor Physics Quantum Electronics & Optoelectronics |
author_facet |
Savenkov, S.N. Oberemok, Y.A. Yakubchak, V.V. Aulin, Y.V. Barchuk, О.I. |
author_sort |
Savenkov, S.N. |
title |
Light depolarization by inhomogeneous linear birefringent media |
title_short |
Light depolarization by inhomogeneous linear birefringent media |
title_full |
Light depolarization by inhomogeneous linear birefringent media |
title_fullStr |
Light depolarization by inhomogeneous linear birefringent media |
title_full_unstemmed |
Light depolarization by inhomogeneous linear birefringent media |
title_sort |
light depolarization by inhomogeneous linear birefringent media |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/118607 |
citation_txt |
Light depolarization by inhomogeneous linear birefringent media / S.N. Savenkov, Y.A. Oberemok, V.V. Yakubchak, Y.V. Aulin, О.I. Barchuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2009. — Т. 12, № 1. — С. 86-90. — Бібліогр.: 10 назв. — англ. |
series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
work_keys_str_mv |
AT savenkovsn lightdepolarizationbyinhomogeneouslinearbirefringentmedia AT oberemokya lightdepolarizationbyinhomogeneouslinearbirefringentmedia AT yakubchakvv lightdepolarizationbyinhomogeneouslinearbirefringentmedia AT aulinyv lightdepolarizationbyinhomogeneouslinearbirefringentmedia AT barchukoi lightdepolarizationbyinhomogeneouslinearbirefringentmedia |
first_indexed |
2025-07-08T14:18:46Z |
last_indexed |
2025-07-08T14:18:46Z |
_version_ |
1837088718728462336 |
fulltext |
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 86-90.
© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
86
PACS 42.25.Dd, 42.25.Ja, 42.81.-i
Light depolarization by inhomogeneous linear birefringent media
S.N. Savenkov, Y.A. Oberemok, V.V. Yakubchak, Y.V. Aulin, О.I. Barchuk
Taras Shevchenko Kyiv National University, Radiophysics Department,
5 build., 2, Acad. Glushkov ave., 03127 Kyiv, Ukraine,
phone: (380-44)526-04-83; e-mail: sns@univ.kiev.ua
Abstract. The purpose of the article is to provide rigorous analysis of light
depolarization by inhomogeneous linear birefringent media in single scattering case. The
object under investigation is a lossless anisotropic crystalline slab with surface
inhomogeneity. For the analysis we use the Mueller matrix model of such class of media
derived in [1], Cloude’s coherency matrix method and known single value depolarization
metrics. Sample calculations are given for calcite CaCO3, paratellurite TeO2 and lithium
niobate LiNbO3.
Keywords: light scattering, depolarization, Mueller matrix, birefringence, Cloude’s
coherency matrix, entropy.
Manuscript received 09.12.08; accepted for publication 18.12.08; published online 02.03.09.
1. Introduction
When the polarization state of the light is characterized by
means of the Stokes parameters, the transformation matrix
is known as the Mueller matrix [2, 3]. From the properties
of the Mueller matrix, one can draw insightful information
about the underlying system. The exploitation of light
polarization properties has a wide range of applications in
a variety of fields, namely photonics technology [2, 3],
astrophysics [4], biological and ecological optics [5]
where scattering is linked to polarization state
transformation and occurrence of depolarization.
Depolarization is the result of decorrelation of the phases
and amplitudes of the light electric vector and selective
absorption of polarization states [2].
As shown earlier [1], the Mueller matrix of
anisotropic lossless crystalline slab with surface
inhomogeneity (roughness) in the eigen coordinate
system has the following form:
,
)(00
)(00
00
00
21122112
21122112
22112211
22112211
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
Φ+ΦΦ−Φ−
Φ−ΦΦ+Φ
Φ+ΦΦ−Φ
Φ−ΦΦ+Φ
=
i
i
M
(1)
where
( )
,
2
ρ
1
1exp
1
2
ρexp1
2
2222
2
⎟⎟
⎟
⎠
⎞
⎪⎭
⎪
⎬
⎫
⎪⎩
⎪
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛
+σ
−
+σ
η
+
⎜
⎜
⎝
⎛
+
⎪⎭
⎪
⎬
⎫
⎪⎩
⎪
⎨
⎧
⎟
⎠
⎞
⎜
⎝
⎛−η−Φ=Φ
z
wk
ww
z
wk
xyxy
xy
xy
brf
xyxy
(2,a)
( ) ( )( )2exp 222
eoheo
brf
xy nnkhnnik −σ−−=Φ , (2.b)
( ) 2124241 kdzdw += , (2.c)
( )( )11222 −−σ=σ eohxy nnk , (2.d)
( )2exp1 xyxy σ−−=η , (2.e)
λπ= 2k is a wavenumber; h is the thickness of a
crystalline slab; eon , denotes refractive indexes of
medium associated with its linear eigenpolarizations,
and d is the beam radius.
After performing normalization, we get:
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
ψψ−
ψψ
=
)cos()sin(00
)sin()cos(00
001
001
bb
bb
a
a
M , (3)
where
( ) ( )22112211 Φ+ΦΦ−Φ=a , (4)
( )2211122 Φ+ΦΦ=b , (5)
( )brf
12arg Φ=ψ . (6)
To describe depolarization, it has been introduced
several the so-called “single value depolarization
metrics”. In this paper, we use only those of them which
do not need scanning the polarization states of input
light for characterization of medium depolarization
ability. First single value metrics is the depolarization
index DI introduced in [6]:
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 86-90.
© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
87
11
2
1
2
11
4
1,
2 3 mmmDI
ji
ij ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−= ∑
=
. (7)
where ijm are Mueller matrix elements in the eigen
coordinate system. The depolarization index lies within
the range 10 ≤≤ DI . Boundary values of DI associate
with the case of unpolarized and totally polarized output
light, respectively.
The Q -metrics is [7]:
[ ] [ ]
[ ]2
224
1
2
1
4
1
2
2
1
3
D
DDImmQ
j
j
j
i
ij
+
−
== ∑∑
=
=
=
, (8)
where 2
14
2
13
2
12 mmmD ++= is the diattenuation
parameter and 10 ≤≤ D .
The bound on the Q -metric is 30 ≤≤ Q . In this
case, 0=Q corresponds to totally depolarizing medium;
10 << Q − to partially depolarizing medium; 31 <≤ Q
represents a partially depolarizing medium if, in
addition, 10 << DI , otherwise, represents non-
depolarizing diattenuating medium; 3=Q is for non-
depolarizing non-diattenuating medium.
One more singlular value depolarization metric that
we use below is entropy. The entropy S was introduced
in Cloude’s coherency matrix method [8, 9], which is as
follows. The coherence matrix J (with elements ijJ ) is
derived from the corresponding Mueller matrix as:
( )4433221111 41 mmmmJ +++=
( )4224311313 41 imimmmJ −++=
( )4334211221 41 imimmmJ −++=
( )4132231423 41 immmimJ −++=
( )4224311331 41 imimmmJ +−+=
( )4433221133 41 mmmmJ −+−=
( )4132231441 41 mimimmJ +−+=
( )4334211243 41 mmimimJ +++−=
( )4334211212 41 imimmmJ +−+= (9)
( )4132231414 41 mimimmJ ++−=
( )4433221122 41 mmmmJ −−+=
( )4224311324 41 mmimimJ +++−=
( )4132231432 41 immmimJ +++−=
( )4334211234 41 mmimimJ ++−=
( )4224311342 41 mmimimJ ++−=
( )4433221144 41 mmmmJ +−−= .
Thus, J depends linearly on M . It can be seen
that the coherence matrix J is positive semidefinite
Hermitian and, hence, has always four real eigenvalues.
The eigenvalues of the coherence matrix, iλ , can be
combined to form a quantity that is a measure of
depolarization in the studied medium. This quantity is
called entropy and is defined as:
∑ ∑∑
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
λλ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
λλ−=
N
i j
jiN
j
jiS
1
log . (10)
When eigenvalues iλ of the coherence matrix J
are given, we have for the initial Mueller matrix:
qq
D
q
q
Dq TMMM ⇔λ=∑
=
;
4
1
, (11)
here q
DM are the Mueller-Jones matrices obtained from
the Jones matrices [2].
The Jones matrix, T (with elements ijt ), in turn, is
obtained in the following manner:
,4,1,,
,,
)(
2
)(
1
)(
22
)(
4
)(
3
)(
21
)(
4
)(
3
)(
12
)(
2
)(
1
)(
11
=τ−τ=τ+τ=
τ−τ=τ+τ=
qtit
itt
qqqqqq
qqqqqq
(12)
where ( ) ( )Tqq
4321τ ττττ= is q -th eigenvector of
the coherence matrix J .
Thus, the Cloude coherency matrix method is, in
essence, an additive matrix model of the depolarizing
Mueller matrix, and represents the initial depolarizing
Mueller matrix as a weighted convex sum of four
Mueller-Jones matrices.
If three of the eigenvalues of J vanish, then the
initial matrix M is a deterministic Mueller-Jones
matrix. If all four eigenvalues of J are not equal to zero
and, at that, 5.0≤S , then the Mueller-Jones matrix,
which corresponds to the maximal eigenvalue, is the
dominant type of deterministic polarization
transformation of the studied medium. So, this method
gives the possibility to study the anisotropy properties of
depolarizing media.
In this work, we investigate the features of light
depolarization by inhomogeneous anisotropic media
described by the Mueller matrix Eq. (3) using the
singular value depolarization metrics presented above.
2. Simulation results and discussion
2.1. Cloude’s coherency matrix analysis
Cloude’s coherency matrix corresponding to the Mueller
matrix Eq. (3) has generally the form:
( ) ( )
( ) ( )
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
ψ−ψ+
ψ−ψ+
=
0000
0000
00)cos(1)sin(
00)sin()cos(1
2
1 bbia
biab
T . (13)
The eigenvalues of the coherency matrix T Eq. (3):
⎟
⎠
⎞⎜
⎝
⎛ +++−⇒λ 2222 1100
2
1 babai . (14)
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 86-90.
© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
88
0.00
0.10
0.20
0.30
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
LiNbO3
TeO2
CaCO3
S
σh, µm
DI
Fig. 1. Dependence of the entropy S on depolarization index
DI and inhomogeneity σh.
The deterministic Mueller matrices in Cloude
decomposition Eq. (11):
( )11111 −−= diagM , (15)
( )11112 −−= diagM , (16)
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
ψ−ψ−
ψψ−
−
−
ψ+
=
)cos()sin(00
)sin()cos(00
00
00
)sin(
2
223
bb
bb
ra
ar
ba
M , (17)
( )
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
ψψ
ψ−ψψ+
ψ+
=
)cos()sin(00
)sin()cos(00
00
00
)sin(
)cos(2
224
bb
bb
ra
ar
ba
brM , (18)
where: 22 bar += .
It can be shown that in order for Mueller matrix
Eq. (3) to be physical, a following condition should be
satisfied: 122 ≤+ ba . The analysis of 3M and 4M
using 4-component model [10] leads us to the conclusion
that these matrices are the matrices of sequence of a
linear phase plate with birefringence value Ψ and
partial polarizer with the linear dichroism value P .
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
ψψ−
ψψ
=
)cos()sin(00
)sin()cos(00
0010
0001
LinPhM , (19)
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
+−
−+
=
P
P
PP
PP
LinAmp
2000
0200
0011
0011
M , (20)
then
.
)cos(2)sin(200
)sin(2)cos(200
0011
0011
/.
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
ψψ−
ψψ
+−
−+
=
=
PP
PP
PP
PP
LinAmpLinPh MM
(21)
For 3M we obtain:
,
2000
0200
0011
0011
)cos()sin(00
)sin()cos(00
0010
0001
3
3
33
33
33
33
33
⎟
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎜
⎝
⎛
+−
−+
×
×
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
δδ−
δδ
=
P
P
PP
PP
CM
(22)
where ψ=δ3 ,
ar
arP
+
−
=3 , ( )
)(sin
)()cos(
2223
ψ+
+ψ−
=
ba
arbrC .
Using the same method for 4M :
,
2000
0200
0011
0011
)cos()sin(00
)sin()cos(00
0010
0001
4
4
44
44
44
44
44
⎟
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎜
⎝
⎛
+−
−+
×
×
⎟⎟
⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎜
⎝
⎛
δδ−
δδ
=
P
P
PP
PP
CM
(23)
where ψ−=δ4 ,
ar
arP
−
+
=4 , ( )
)(sin
)()cos(
2224
ψ+
−ψ+
=
ba
arbrC .
2.2. Singlular value depolarization metrics
The expressions of depolarization index, polarization
entropy and Q -metric for the Mueller matrix Eq. (3) has
been determined according to [6-9] as follows:
polarization entropy
[ ])1()1(
4 )1()1(log
2
1 rr rrS −+ −+−= , (24)
depolarization index
( )( ) 3112 2 −+= rDI , (25)
Q -metric
( )22 121 abQ ++= . (26)
Corresponding dependences ( ),( hDIS σ , ),( hQS σ ,
),( baS , ),( baQ ) for the following crystals: calcite
CaCO3, paratellurite TeO2 and lithium niobate LiNbO3
have been calculated and presented in (Figs 1 to 4).
Fig. 1 presents the dependences of entropy S and
depolarization index DI (with projections on
corresponding reference planes) on the value of
inhomogeneity hσ . It can be seen that the minimum
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 86-90.
© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
89
0.00
0.10
0.20
0.30
1.0
1.5
2.0
2.5
3.0
0.0
0.1
0.2
0.3
0.4
LiNbO3
TeO2
CaCO3
S
σh, µm
Q
Fig. 2. Dependence of the entropy S on Q-metric and
inhomogeneity σh.
value of depolarization index and the maximum value of
entropy are various for different crystals. This, as it will
be illustrated below, is determined by the values of
refractive indexes of crystals.
Fig. 2 shows that the maximum value of 3max =Q
is observed at 0=σh for all the crystals, i.e., in the case
when the Mueller matrix Eq. (3) corresponds to an
ordinary linear birefringent plate. The minimum value is
equal for all the crystals as well as for 1min =Q , which
corresponds to the case of partially depolarizing
medium.
From Figs 3 and 4, one can see that the minimum
value of Q -metric and maximum value of entropy S
are reached at different values of a for different
crystals, Figs 3b and 4b. This is determined by the
values of refractive indexes of the crystals. Indeed, in
case of large inhomogeneity ( ∞→σh ), we have:
2
2
2
1
2
2
2
1
2
2
1
1
)1()1(
)1()1(
ξ+
ξ−
=
−+−
−−−
=∞→σ
nn
nna
h
, (27)
0=∞→σh
b , (28)
where ξ is of the form:
( ) ( )11 21 −−=ξ nn . (29)
Thus, the entropy S for this case is
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
⎛
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎝
⎛
ξ
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ξ+
−=
⎟
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎜
⎝
⎛
ξ
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ξ+
∞→σ
22
11
1
2
1
1
24 11
1
1
1log
h
S . (30)
Corresponding numerical values of ξ , ∞→σh
a ,
∞→σh
S and value of inhomogeneity hσ when in matrix
Eq. (3) 0=b , i.e. when the case of large inhomogeneity
takes place, are presented in the table.
Table. Numerical values of ξ , ∞→σh
a , ∞→σh
S and hσ
for the case of large inhomogeneity.
1n 2n ξ ∞→σh
a ∞→σh
S hσ ,
mµ
LiNbO3 2.208 2.300 0.93 0.07 0.498 2.896
TeO2 2.259 2.411 0.89 0.11 0.495 1.753
CaCO3 1.489 1.655 0.75 0.28 0.470 1.605
It needs to note that ∞→σh
S in Eq. (30) is equal
5.0 when 1=ξ . This means that 21 nn = in this case
and, thus, ∞→σh
S for matrix Eq. (3) can never be equal
to 5.0 .
LiNbO3
TeO2
CaCO3
S
a
0.0
0.1
0.2
0.3
0.0
0.3
0.6
0.9
1.2
0.0
0.2
0.4
LiNbO3
TeO2
CaCO3
S
a
b
b
Fig. 3. Dependence of the entropy S , Eq. (24), as a function
of a and b .
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 1. P. 86-90.
© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
90
Q
LiNbO3
TeO2
CaCO3
a
0.0
0.1
0.2
0.3
0.0
0.3
0.6
0.9
1.2
1.0
1.5
2.0
2.5
3.0
LiNbO3
TeO2
CaCO3
b
Q
a
b
Fig. 4. Dependence of the Q -metric, Eq. (26), as a function of
a and b .
Dependences from Figs 3b and 4b for calcite,
paratellurite and lithium niobate are presented in Figs 3a
and 4a by white lines. Surfaces in Figs 3a and 4a
determine all the possible values of Q -metric and
entropy S as functions of a and b for the media
described by the Mueller matrix model Eq. (3).
3. Conclusions
In summary, we have studied depolarization of light by
inhomogeneous anisotropic lossless crystalline medium
in the single scattering case. We describe this medium
with the depolarization index DI , Q -metric and the
polarization entropy S that is added by the medium to
the scattered field. These quantities provide insights into
the particular depolarization mechanisms of the various
media. It has been shown that the polarization entropy of
scattering medium in the case of large inhomogeneity
differs from its maximal possible value for the class of
depolarizing media with only two non-zero coherency
matrix eigenvalues 5.0max =S .
References
1. S.N. Savenkov, R.S. Muttiah, K.E. Yushtin,
S.A. Volchkov, Mueller matrix model of inhomo-
geneous, linear, birefringent medium: single
scattering case // Journal of Quantitative Spectros-
copy & Radiative Transfer 106, p. 475-486 (2007).
2. Ch. Brosseau, Fundamentals of Polarized Light. A
Statistical Optics Approach. New York, North-
Holland Publishing Company, p. 406, 1998.
3. P. Huard, Polarization of Light. New York, Wiley,
p. 320, 1997.
4. A.A. Kokhanovsky, Light Scattering Media Optics:
Problems and Solutions. Chichester, Praxis
Publishing, p. 403, 2001.
5. S.N. Savenkov, Scattering (Mueller) matrices and
experimental determination of matrix elements,
Chap. 4, In: From Laboratory Spectroscopy to
Remotely Sensed Spectra of Terrestrial Ecosystems,
Eds. R.S. Muttiah. Kluwer Academic Publishers,
Dordrecht, The Netherlands, p. 85-107, 2002.
6. J.J. Gil, E. Bernabeu, Depolarization and
polarization indexes of an optical system // Opt.
Acta 33, p. 185-189 (1986).
7. R. Espinosa-Luna, E. Bernabeu, On the Q(M)
depolarization metric // Opt. Communs 277, p. 256-
258 (2007).
8. S.R. Cloude, Group theory and polarization algebra
// Optik (Stuttgart) 7, p. 26-36 (1986).
9. S.R. Cloude, E. Pottier, Concept of polarization
entropy in optical scattering // Opt. Eng. 34,
p. 1599-1610 (1995)
10. S.N. Savenkov, V.V. Marienko, E.A. Oberemok,
O.I. Sydoruk, Generalized matrix equivalence
theorem for polarization theory // Phys. Rev. E 74,
056607 (2006).
|