Diagram technique for the Hubbard model. Ladder diagram summation
A new diagram technique based on the generalized Wick theorem has been elaborated for the systems with strong electronic correlations. Coulomb repulsion of the electrons of the Hubbard model is considered as the main part of Hamiltonian and is taken into account in a zero order approximation. Th...
Gespeichert in:
Datum: | 1998 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
1998
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/118628 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Diagram technique for the Hubbard model. Ladder diagram summation / V.A. Moskalenko, L.Z. Kon // Condensed Matter Physics. — 1998. — Т. 1, № 1(13). — С. 23-29. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-118628 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1186282017-05-31T03:08:19Z Diagram technique for the Hubbard model. Ladder diagram summation Moskalenko, V.A. Kon, L.Z. A new diagram technique based on the generalized Wick theorem has been elaborated for the systems with strong electronic correlations. Coulomb repulsion of the electrons of the Hubbard model is considered as the main part of Hamiltonian and is taken into account in a zero order approximation. The hopping matrix elements are considered as a perturbation. One-particle Matsubara-Green function of the model has been investigated and Dyson equation has been obtained. New elements of the theory which are characteristic of this new approach are the local many-particle irreducible Green functions, or Kubo cumulants. They become zero when Coulomb interaction is zero. The main task of this paper is the summing of ladder diagrams which take into account the most essential charge and spin fluctuations of the system. The integral equations, which sum such diagrams, have been established for two different channels. The coherent potential approximation has been used to simplify and solve these equations. On this basis a metal-dielectric phase transition has been investigated. На основі узагальненої теореми Віка розроблено нову діаграмну техніку для систем з сильними електронними кореляціями. Кулонівське відштовхування електронів в моделі Хаббарда розглядається як головна частина гамільтоніана і враховується в нульовому наближенні. Матричний елемент міжвузлового перескоку електронів враховується як збурення. Досліджено одночастинкову мацубарівську функцію Гріна й отримано рівняння Дайсона. Новими елементами теорії, що характерні для даного наближення, є багаточастинкові незвідні функції Кубо. Вони обертаються в нуль, коли кулонівська взаємодія рівна нулю. Головна мета даної роботи – це сумування драбинкових діаграм, що враховують найбільш суттєві спінові і зарядові флуктуації системи. Отримані інтегральні рівняння для двох каналів розсіяння. Метод когерентного потенціалу використовується для спрощення і розв’язування цих рівнянь. На цій основі встановлена умова переходу метал-діелектрик. 1998 Article Diagram technique for the Hubbard model. Ladder diagram summation / V.A. Moskalenko, L.Z. Kon // Condensed Matter Physics. — 1998. — Т. 1, № 1(13). — С. 23-29. — Бібліогр.: 11 назв. — англ. 1607-324X PACS: 71.28.+d, 71.27.+a DOI:10.5488/CMP.1.1.23 http://dspace.nbuv.gov.ua/handle/123456789/118628 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A new diagram technique based on the generalized Wick theorem has
been elaborated for the systems with strong electronic correlations. Coulomb
repulsion of the electrons of the Hubbard model is considered as
the main part of Hamiltonian and is taken into account in a zero order approximation.
The hopping matrix elements are considered as a perturbation.
One-particle Matsubara-Green function of the model has been investigated
and Dyson equation has been obtained. New elements of the theory
which are characteristic of this new approach are the local many-particle
irreducible Green functions, or Kubo cumulants. They become zero when
Coulomb interaction is zero. The main task of this paper is the summing
of ladder diagrams which take into account the most essential charge and
spin fluctuations of the system. The integral equations, which sum such diagrams,
have been established for two different channels. The coherent potential
approximation has been used to simplify and solve these equations.
On this basis a metal-dielectric phase transition has been investigated. |
format |
Article |
author |
Moskalenko, V.A. Kon, L.Z. |
spellingShingle |
Moskalenko, V.A. Kon, L.Z. Diagram technique for the Hubbard model. Ladder diagram summation Condensed Matter Physics |
author_facet |
Moskalenko, V.A. Kon, L.Z. |
author_sort |
Moskalenko, V.A. |
title |
Diagram technique for the Hubbard model. Ladder diagram summation |
title_short |
Diagram technique for the Hubbard model. Ladder diagram summation |
title_full |
Diagram technique for the Hubbard model. Ladder diagram summation |
title_fullStr |
Diagram technique for the Hubbard model. Ladder diagram summation |
title_full_unstemmed |
Diagram technique for the Hubbard model. Ladder diagram summation |
title_sort |
diagram technique for the hubbard model. ladder diagram summation |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
1998 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/118628 |
citation_txt |
Diagram technique for the Hubbard model. Ladder diagram summation / V.A. Moskalenko, L.Z. Kon // Condensed Matter Physics. — 1998. — Т. 1, № 1(13). — С. 23-29. — Бібліогр.: 11 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT moskalenkova diagramtechniqueforthehubbardmodelladderdiagramsummation AT konlz diagramtechniqueforthehubbardmodelladderdiagramsummation |
first_indexed |
2025-07-08T14:20:53Z |
last_indexed |
2025-07-08T14:20:53Z |
_version_ |
1837088853421195264 |
fulltext |
Condensed Matter Physics, 1998, Vol. 1, No 1(13), p. 23–39
Diagram technique for the Hubbard
model. Ladder diagram summation
V.A.Moskalenko 1,2 , L.Z.Kon 2
1 Joint Institute for Nuclear Research, 141980 Dubna, Russia
2 Institute of Applied Physics, 5 Grosul St., 277028 Kishinev, Moldova
Received March 20, 1998
A new diagram technique based on the generalized Wick theorem has
been elaborated for the systems with strong electronic correlations. Co-
ulomb repulsion of the electrons of the Hubbard model is considered as
the main part of Hamiltonian and is taken into account in a zero order ap-
proximation. The hopping matrix elements are considered as a perturba-
tion. One-particle Matsubara-Green function of the model has been investi-
gated and Dyson equation has been obtained. New elements of the theory
which are characteristic of this new approach are the local many-particle
irreducible Green functions, or Kubo cumulants. They become zero when
Coulomb interaction is zero. The main task of this paper is the summing
of ladder diagrams which take into account the most essential charge and
spin fluctuations of the system. The integral equations, which sum such di-
agrams, have been established for two different channels. The coherent po-
tential approximation has been used to simplify and solve these equations.
On this basis a metal-dielectric phase transition has been investigated.
Key words: generalized Wick theorem, ladder diagrams, Hubbard model
PACS: 71.28.+d, 71.27.+a
1. Introduction
In the previous papers [1-5] a new diagram technique for the systems with
strong electron correlations was elaborated. Such systems contain as the main part
of their Hamiltonian on-site Coulomb repulsion of electrons. This interaction has
to be taken into account in the zero order Hamiltonian of such systems. The other
terms of the Hamiltonian, such as the hopping matrix elements of the Hubbard
model [6] or hybridization of electron states of the periodic Anderson model [7]
are treated as perturbations.
Because the zero order Hamiltonian which contains the above mentioned Cou-
lomb interaction can be diagonalized by using the Hubbard and not a free electron
operators, the ordinary Wick theorem proposed in the weak coupling field theory
c© V.A.Moskalenko, L.Z.Kon 23
V.A.Moskalenko, L.Z.Kon
for disentangling chronological averages of an electron operator is not valid. Instead
of a weak coupling, the Generalized Wick Theorem (GWT) has been proposed for
the first time for a one-band Hubbard model with the Hamiltonian
H = H0 +Hint, H0 =
∑
i
H0
i , H0
i = −µ
∑
σ
niσ + Uni↑ni↓ ,
Hint =
∑
ijσ
t (j − i) c+jσciσ, niσ = c+iσciσ, (1)
where c+jσ(cjσ) are an electron creation (annihilation) operator with spin σ and site
index j. Here U is Coulomb repulsion of an electron, µ - a chemical potential of
the system and t(j − i) - a matrix element of hopping.
As the zero order density matrix is factorized on the site indices, all the calcu-
lations of the thermodynamic perturbation theory contributions are made in the
local presentation. The sum of such contributions gives us the effect of delocaliza-
tion and renormalization of the dynamical functions.
The new elements of the GWT are one-site many-particle irreducible Green
functions G
(0)ir
n or Kubo cumulants. These quantities contain all spin and charge
fluctuations of a strong correlated system. They are identically equal to zero when
Coulomb interaction is zero.
The next simple example can be useful to elucidate this question. We apply
the GWT to the following chronological average:
〈T c(x1)c(x2)c(x3)c(x4)〉0 = 〈T c(x1)c(x4)〉0〈T c(x2)c(x3)〉0−
−〈T c(x1)c(x3)〉0〈T c(x2)c(x4)〉0 +G
(0)ir
2 [x1x2|x3x4] . (2)
Here x stands for x, σ, τ.
All the quantities of the right-hand side of this equation are local. The zero
order or the local approximation of the Matsubara one-particle Green function is
equal to
G
(0)
1 (x1x2) = −〈T c(x1)c(x2)〉0 = δx1,x2
G(0)
σ1σ2
(τ1 − τ2)
G(0)
σ1σ2
(τ1 − τ2) = −〈T cσ1
(τ1)cσ2
(τ2)〉0,
where c(τ ) and c(τ ) are interaction presentations of electron operators and τ –
imaginary time of thermodynamic Green functions. Symbol 〈...〉0 stands for the
statistical average with a zero order density matrix. A two-particle irreducible
Green function G
(0)ir
2 is a local quantity:
G
(0)ir
2 [x1, x2|x3x4] = δx1x2
δx1x3
δx1x4
G
(0)ir
2 [σ1, τ1;σ2τ2|σ3, τ3;σ4, τ4] (3)
with the structure of Kubo cumulant:
G
(0)ir
2 [σ1, τ1;σ2, τ2|σ3, τ3;σ4, τ4] = 〈T cσ1
(τ1)cσ2
(τ2)cσ3
(τ3)cσ4
(τ4)〉0−
−〈T cσ1
(τ1)cσ4
(τ4)〉0〈T cσ2
(τ2)cσ3
(τ3)〉0 + 〈T cσ1
(τ1)cσ3
(τ3)〉0〈T cσ2
(τ2)cσ4
(τ4)〉0. (4)
24
Diagram technique for the Hubbard model
This quantity is just a new element of the GWT because the first two terms of the
right-hand side of equation (2) are the ordinary Wick theorem contributions. The
signs of these terms, and in general of all of them, are determined by the number
of permutation P which is necessary to obtain the final from the initial order of
electron operators. The Hubbard operators appear only at the last stage of such
an investigation – when the local quantities are calculated.
In the Generalized Wick theorem for Hubbard operators Xnm
i , used in papers
[8-10], the electrons operators are expressed with their aid at the initial stage of the
investigation. Because the Hubbard operators have a more complicated algebraical
structure, the diagram technique for them is more complicated.
Now we shall consider our approach. In the higher orders of the perturbation
theory there appear more complicated irreducible structures. For example, irre-
ducible functions G
(0)ir
n with the number of particles n = 3, 4... will appear. Then,
different products of irreducible functions G
(0)ir
m1 G
(0)ir
m2 G
(0)ir
m3 will be obtained, where
the sum m1 +m2 +m3 = n is equal to the number of particles that participate in
the process of delocalization.
We can formulate the GWT in the following form:
G(0)
n (x1...xn|x′
1...x
′
n) = (−1)n〈T c(x1)...c(xn)c(x
′
1)...c(x
′
n)〉0 =
∑
{P}
(−1)PG(0)(x1|x
′
1)....G
(0)(xn|x′
n) +
∑
{P}
(−1)P
∑
m1>1,m2>1,
m1+m2+...=n
G(0)ir
m1
[x1...xm1
|x′
1...x
′
m1
]×
×G(0)ir
m2
[xm1+1...xm1+m2
|x′
m1+1...x
′
m1+m2
] +G(0)ir
n [x1...xn|x′
1...x
′
n]. (5)
Figure 1. Diagrams of the first two or-
ders of the perturbation theory for one-
particle Green-function. Diagram a) is of
the zero order, b) of the first and c) and
d) of the second order contributions. a),
b) and c) diagrams are of a chain type
and d) of a new kind, containing the first
Kubo cumulant G
(0)ir
2 .
In (5) we mean that G
(0)ir
1 (xi|x′
i) =
G(0)(xi|x′
i).
The first term of the right-hand side
of (5) is of a usual Wick kind, but
all the next ones are characteristic of
strongly correlated systems.
The diagrammatic rules for writing
down the contributions of the pertur-
bation theory series have been formu-
lated in [1-2]. One-particle Green func-
tion G(0)(x1|x′
1) is represented by a thin
solid line directed from x′
1 to x1 and the
local quantity
G
(0)ir
n [x1...xn|x′
1...x
′
n] – by a rectan-
gle which surrounds n arrows directed
to n points x1...xn and n arrows origi-
nated from x′
1...x
′
n.
In these diagrams the hopping ma-
trix elements are represented by thin
dashed lines, the delocalized electron
Green function – by a full solid line.
25
V.A.Moskalenko, L.Z.Kon
In figure 1 the one-particle Green function’s diagrams of the first two pertur-
bation theory orders is represented:
The sign of the diagram 1d) corresponds to the enumeration of rectangle ar-
guments G
(0)ir
2 [x1|2′x′].
We can see from the first three diagrams of figure 1 that the chain iterative
process leads to the ordinary Dyson equation with hopping matrix element t(1′−1)
as a self-energy.
But new diagrams containing charge and spin fluctuations give rise to an ad-
ditional renormalization process resulting in the necessity to introduce a new ir-
reducible strongly linked function Z(x|x′) in the theory. This function is the sum
of all irreducible contributions which cannot be broken into two parts by cutting
a single hopping line.
In the second order of the perturbation theory the diagram of figure 1 d) is a
contribution to this function Z(2)(x|x′
).
In paper [1] it was proved that by introducing function Λ(x|x′) (x = x, σ, τ )
Λ(x|x′) = G(0)(x|x′) + Z(x|x′) (6)
we get the Dyson equation for the renormalized one-particle Green functionG(x|x′
)
of the Hubbard model:
G(x|x′) = Λ(x|x′) +
∑
x1,x2
Λ(x|x1)t(x1 − x2)G(x2|x′), (7)
where t(x1 − x2) = t(x1 − x2)δσ1σ2
δ(τ1 − τ2) and summations stand for summing
by discrete indices and integration by imaginary time.
In the Fourier representation we have
Gσ(k|iω) =
Λσ(k|iω)
1− ξ(k)Λσ(k|iω)
. (8)
Here k is the momentum of an electron, ωn = (2n + 1)π/β – Matsubara odd fre-
quency and ξ(k)− Fourier component of the hopping matrix element and electron
band energy.
Equation (8), in distinction from (7), supposes diagonality by spin indices of
all the quantities. If we sum only chain diagrams, without taking into account
correlation contributions, we obtain the so-called Hubbard I approximation:
GI
σ(k|iω) =
G
(0)
σ (iω)
1− ξ(k)G
(0)
σ (iω)
, (9)
where G
(0)
σ (iω) is the local Hubbard-Green function of an electron. As it is well
known, the energy spectrum in this approximation consists of two lower and upper
Hubbard subbands.
The complicacy of irreducible contributions to one-particle Green function
makes impossible the obtaining of the exact result of a Dyson-type for Z(x|x′)
function. There are some possibilities to sum a class of irreducible diagrams which
contain the most important information about the role of spin and charge fluctu-
ations.
26
Diagram technique for the Hubbard model
2. Ladder diagrams
The task of this paper is to demonstrate the possibility to sum a special class
of irreducible diagrams which take into account two-particle correlation effects.
In figure 2 we demonstrate some diagrams for Z(x|x′
) function which are es-
sentially for strong correlated systems and will be summed.
Figure 2. Ladder diagrams for irreducible Z(x|x′
) function. They repeat the
infinite number of times the irreducible two-particle Green functions. The dashed
lines represent renormalized hopping matrix elements. The rectangles in these
diagrams stand for two-particle irreducible Green functions G
(0)ir
2 .
The renormalized hopping matrix element t̃(x−x
′
) is the result of the summing
of some elements of diagrams and are determined by the equation:
t̃(x
′ − x) = t(x
′ − x) +
∑
x1,x2
t(x
′ − x1)G(x1|x2)t(x2 − x), (10)
Fourier representation ξσ(k|ω) of quantity t̃(x
′ − x) is equal to
ξσ(k|iωn) = ξ(k) + ξ2(k)Gσ(k|iωn) =
ξ(k)
1− ξ(k)Λσ(k|iωn)
, (11)
where ξ(k) is a tight-binding dispersion law of non-interacting electrons.
For some of the diagrams in figure 2, especially for the diagram in figure 2a,
the renormalization process is very important because this diagram with the un-
renormalized hopping line is equal to zero, noting that t(x
′
= x) = 0. The other
diagrams in figure 2 are delocalized (x 6= x
′
) and their contributions are not zero
when single dashed lines are used.
27
V.A.Moskalenko, L.Z.Kon
In figure 2 we have two different kinds of ladder diagrams. One of them rep-
resented by diagrams a), b),c) and the next diagrams of the higher order of the
perturbation theory are repetitions of the process of scattering two electrons with
the conservation of their sum of moments and frequencies.
The second ladder shown by the diagram in figure 2d and the next diagrams
represent the process of repeated electron-hole scattering with the conservation of
their differences of momenta and frequencies.
In the weak coupling theory of the solid state such a summation is known very
well and is the realization of the Random Phase Approximation.
The difference between the classical RPA and our ladder generalized RPA
consists in the instant in the first case and the retarded in the second case character
of electron scattering, which in our case is determined by four imaginary times
of irreducible two-particles Green functions represented in the diagrams by the
rectangles.
To sum the first class of ladder diagrams of figure 2 for Z(x|x′
) function we
shall investigate a more simple process of delocalization of two-particle irreducible
Green functions represented in figure 3. This renormalized function is determined
as Gir
2 .
The graphical integral equation (figure 3b) for the delocalized irreducible Green
function Gir
2 [x1,x2|x′
2,x
′
1] has the form:
Gir
2 [x1, x2|x′
2, x
′
1] = G
(0)ir
2 [x1, x2|x′
2, x
′
1] +
1
2
∑
11
′
22
′
G
(0)ir
2 [x1,x2|1
′
, 2
′
]
×t̃(1
′ − 1)t̃(2
′ − 2)Gir
2 [2, 1|x
′
2, x
′
1). (12)
Here xi stands, as usual, for x1, σ1, τ1; 1− for 1, α1, θ1.
The sum
∑
1
stands for the summing by lattice sites 1, spin α1 and integration
by imaginary time θ1 in the (0, β) interval. The site dependence of the renormalized
Gir
2 function is partially diagonal, as it can be seen from figure 3a:
Gir
2 [x1, x2|x′
2, x
′
1] = δx1,x2
δx′
1,x
′
2
Gir
2 [x1 − x′
1;σ1τ1;σ2τ2|σ
′
2τ
′
2;σ
′
1τ
′
1]. (13)
The delocalized irreductible Green function, which depends on relative lattice
sites, obeys the equation:
Gir
2 [x1 − x′
1;σ1τ1;σ2τ2|σ′
2τ
′
2;σ
′
1τ
′
1] = δ
x1x
′
1
G
(0)ir
2 [σ1τ1;σ2τ2|σ′
2τ
′
2;σ
′
1τ
′
1]+
+
1
2
β∫
0
...
β∫
0
dθ1dθ2dθ
′
1dθ
′
2
∑
α1α2
∑
1
G
(0)ir
2 [σ1τ1;σ2τ2|α1θ
′
1, α2θ
′
2]×
×t̃α1
(x1 − 1|θ′1 − θ1)tα2
(x1 − 1|θ′2 − θ2)G
ir
2 [1− x′
1;α2, θ2;α1θ1|σ′
2, τ
′
2;σ
′
1, τ
′
1]. (14)
To advance the solution of this equation we introduce the momentum and fre-
quency representation of our functions:
G2[σ1τ1;σ2τ2|σ′
2τ
′
2;σ
′
1τ
′
1] =
28
Diagram technique for the Hubbard model
=
1
β4
∑
ω1ω2ω
2
′ ω
1
′
G2[σ1, iω1;σ2, iω2|σ′
2, iω
′
2;σ, iω
′
1]e
−iω1τ1−iω2τ2+iω′
2τ
′
2+iω′
1τ
′
1,
Z (x|x′) =
1
βN
∑
k
∑
ω
Zσσ1(k|iω)e−ik(x−x′)−iω(τ−τ ′)). (15)
That permits us to rewrite equation (14) in the form:
Figure 3. Ladder diagrams (figure 3a) for the delocalized two-particle irreducible
Green function Gir
2 and the graphical integral equation (figure 3b) for their sum-
ming. The rectangles with full lines stand for delocalized and with thin lines –
for localized irreducible functions.
Gir
2,q [σ1, iω1;σ2, iω2|σ′
2, iω
′
2;σ
′
1, iω
′
1] = G
(0)ir
2 [σ1, iω1;σ2, iω2|σ′
2, iω
′
2;σ
′
1, iω
′
1]+
+
1
2β2
∑
α1α2
∑
ω′′
1 ,ω
′′
2
G
(0)ir
2 [σ1, iω1;σ2, iω2|α1, iω
′′
1 ;α2, iω
′′
2 ]×
29
V.A.Moskalenko, L.Z.Kon
×ξ2,q[α1, iω
′′
1 ;α2, iω
′′
2 ]G
ir
2,q[α2, iω
′′
2 ;α1, iω
′′
1 |σ′
2, iω
′
2;σ
′
1, iω
′
1], (16)
where
ξ2,q[α1, iω
′′
1 , α2, iω
′′
2 ] =
1
N
∑
q1
ξα1
(q1|iω′′
1) ξα2
(q − q1|iω′′
2) . (17)
All the irreducible functions demonstrate spin and frequency conservation accord-
ing to the fact that the total spin and frequency of the annihilated electrons are
equal to those of the created electrons:
G
(0)ir
2 [σ1,iω1;σ2,iω2|σ3,iω3;σ4,iω4] = βδ(ω1 + ω2 − ω3 − ω4)×
G̃
(0)ir
2 [σ1, iω1;σ2, iω2|σ3, iω3;σ4, ω4] = δσ1σ3
δσ2σ4
[K1[σ1, iω1;σ2, iω2|σ1, iω3;σ2, iω4]+
β2δ(ω1 + ω2 − ω3 − ω4)δ(ω1 − ω3)G̃
(0)
σ1
(iω1)G̃
(0)
σ2
(iω2)] + δσ1σ4
δσ2σ3
×
[K2[σ1iω1;σ2iω2|σ2iω3;σ1iω4]− β2δ(ω1 + ω2 − ω3 − ω4)δ(ω1 − ω4)×
G̃(0)
σ1
(iω1)G̃
(0)
σ2
(iω2)]− σ1σ3δσ2,−σ1
δσ4,−σ3
K3 [σ1, iω1;−σ1, iω2|σ3, iω3;−σ3, iω4] . (18)
The functions Ki, i = 1, 2, 3, are the contributions of different spin channels
from the two-particle on-site Green function, while the bilinear on G̃
(0)
σ (iω) terms
are the substracted from Kubo cumulant members. All the Ki functions are pro-
portional to the factor βδ(ω1 + ω2 − ω3 − ω4) which expresses the frequencies
conservation law. Some values of these Ki functions may be found in [1]. These
laws of conservation are also valid for the renormalized Gir
2 quantity.
To take into account the frequency conservation law we go from Gir to G̃ir
functions and define new frequencies using the even quantity Ω = 2mπ/β
G̃ir
2,q [σ, i(ω + Ω);σ1, i(ω1 −Ω1)|σ2, iω1;σ
′, iω] =
= G̃
(0)ir
2 [σ, i(ω +Ω);σ1, i(ω1 − Ω)|σ2, iω1;σ
′, iω] +
+ 1
2β
∑
Ω1α1α2
G̃(0)ir [σ, i(ω + Ω);σ1, i(ω1 − Ω)|α1, i(ω1 − Ω1);α2, i(ω + Ω1)]
×ξ2,q [α1, i(ω1 − Ω1);α2, i(ω + Ω1)]
×G̃ir
2,q [α2, i(ω + Ω1);α1, (ω1 − Ω1)|σ2, iω1;σ
′, iω] .
(19)
Using the definition of renormalized Gir
2 function we can write down the contribu-
tion of the first class of the ladder diagrams in figure 2 to the function Z(x|x′) in
the form:
ZI(x|x′) = −
∑
x1x
′
1
Gir
2 [x, x1|x′
1, x
′] t̃(x′
1 − x1)
On the basis of (13) and (18) this equation may be rewritten as
ZI
σσ
′ (x− x′|τ − τ ′) = − ∑
σ1,σ
′
1
∫ ∫
dτ1dτ
′
1G
ir
2 [x− x′;στ, σ1τ1|σ′
1, τ
′
1;σ
′τ ′]
×t̃σ′
1
σ1
(x′ − x, τ ′
1 − τ1) = − 1
β3
∑
σ1,σ
′
1
,ω,ω′,ω1
t̃σ′
1
σ1
(x′ − x; iω1)
×Gir
2 [x− x′, σ, iω;σ1, iω1|σ′
1, iω1;σ
′, iω] e−iωτ+iω′τ ′
(20)
30
Diagram technique for the Hubbard model
or
ZI
σ(q|iω) = − 1
N
1
β
∑
k1ω1σ1
G̃ir
2,k1
[σ, iω;σ1, iω1|σ1, iω1, σ, iω] ∗ ξσ1
(k1 − q|iω1). (21)
According to equation (21), to find ZI we need a more simple modification of
renormalized Gir
2 function with equality in pairs of frequencies and spins. But it is
necessary, at the beginning, to find this function for a more general case and then
to put a specific condition Ω = 0 in it.
Now we take into account that the spin of the propagating electron is conserved
σ = σ′ (no magnetic fields and magnetic structures), and so is the conservation
law of the spin in all the intermediate scattering processes. Then we have σ2 = σ1
and σ+ σ1 = α1 +α2. Because σ1 can be equal to ±σ, we shall consider these two
possibilities separately. In the first case σ1 = σ we have α1 = α2 = σ and equation
(19) in a more simple form:
G̃ir
2,q[σ, i(ω + Ω), σ, i(ω1 − Ω)|σ, iω1;σ, iω)] =
= G̃
(0)ir
2 [σ, i(ω + Ω);σ, i(ω1 − Ω)|σ, iω1, σ, iω]
+ 1
2β
∑
Ω1
G̃
(0)ir
2 [σ, i(ω + Ω);σ, i(ω1 − Ω)|σ, i(ω1 − Ω1), σ, i(ω + Ω1)]
×ξ2,q [σ, i(ω1 − Ω1);σ, i(ω + Ω1)]
×G̃ir
2,q[σ, i(ω +Ω1);σ, i(ω1 − Ω1)|σ, iω1;σ, iω].
(22)
But in the second case σ1 = −σ,we have two possibilities to select α1 = −α2 = ±σ
and equation (19) takes the form:
G̃ir
2,q [σ, i(ω + Ω);−σ, i(ω1 − Ω)| − σ, iω1;σ, iω] =
= G̃
(0)ir
2 [σ, i(ω + Ω),−σ, i(ω1 −Ω)| − σ, iω1;σ, iω]+
+ 1
2β
∑
Ω1
G̃
(0)ir
2 [σ, i(ω + Ω);−σ, i(ω1 − Ω)|σ, i(ω1 − Ω1);−σ, i(ω + Ω1)]
×ξ2,q [σ, i(ω1 − Ω1),−σ, i(ω + Ω1)]
×G̃ir
2,q [−σ, i(ω +Ω1);σ, i(ω1 − Ω1)| − σ, iω1;σ, iω] +
+ 1
2β
∑
Ω1
G̃
(0)ir
2 [σ, i(ω + Ω);−σ, i(ω1 − Ω)| − σ, i(ω1 −Ω1);σ, i(ω +Ω1)]
×ξ2,q [−σ, i(ω1 − Ω1), σ, i(ω + Ω1)]
×G̃ir
2,q [σ, i(ω + Ω1);−σ, i(ω1 − Ω1)| − σ, iω1;σ, iω] .
(23)
In the second term of the right-hand side of equation (23) we can make the fol-
lowing substitution of Ω1 by variable Ω1 = ω1 − ω − Ω′
2 and take into account
the antisymmetric properties of local and delocalized irreducible Green functions
according to the permutation of their arguments. The result is the equality of the
last two terms of (23). We can use only one of them multiplying by the coefficient
31
V.A.Moskalenko, L.Z.Kon
two. We have
G̃ir
2,q [σ, i(ω + Ω);−σ, i(ω1 − Ω)| − σ, iω1;σ, iω] =
= G̃
(0)ir
2 [σ, i(ω + Ω);−σ, i(ω1 − Ω)| − σ, iω1;σ, iω]+
+ 1
β
∑
Ω1
G̃
(0)ir
2 [σ, i(ω + Ω);−σ, i(ω1 − Ω)| − σ, i(ω1 − Ω1);σ, i(ω + Ω1)]
×ξ2,q [−σ, i(ω1 − Ω1);σ, i(ω + Ω1)]
×G̃ir
2,q [σ, i(ω + Ω1);−σ, i(ω1 − Ω1)| − σ, iω1;σ, iω)] .
(24)
To solve equations (22) and (24) it is necessary to know two kernels of these
integral equations, namely, G̃
(0)ir
2 [σ, i(ω+Ω);σ, i(ω1−Ω)|σ, i(ω1−Ω1);σ, i(ω+Ω1)]
and G̃
(0)ir
2 [σ, i(ω +Ω),−σ, i(ω1 − Ω)| − σi(ω1 −Ω), σi(ω + Ω1)] which were studied
in papers [1-2] and will be discussed below.
To find the second contribution to the irreducible function Z(x|x′) we have to
analyse diagrams d) in figure 2 and the analogous diagrams of the higher order of
the perturbation theory (see figure 4).The infinite series of such kind of diagrams
belong to the new renormalized and delocalized function H ir
2 [x1x2|x2x
′
1].
All such diagrams have a coefficient equal to one. The sign of the diagrams
corresponds to a special order of arguments of all the irreducible functions. It
must be of a clockwise order if we begin to count from the lower left corner of the
rectangle or counter-clockwise if the count begins from the lower right corner of
the rectangle. The function H ir
2 has partial local properties
H ir
2 [x1, x
′
2|x2, x
′
1] = δx1,x
′
2
δx2,x
′
1
H ir
2 [x1 − x′
1;σ1τ1;σ
′
2, τ2|σ2, τ
′
2;σ
′
1, τ
′
1] . (25)
This new function, which depends on the relative arguments x1 − x′
1, obeys the
integral equation (see figure 4b):
H ir
2 [x1 − x′
1;σ1, τ1;σ
′
2, τ
′
2|σ2, τ2;σ
′
1τ
′
1] = −δx1,x
′
1
G
(0)ir
2 [σ1, τ1;σ2, τ2|σ′
2, τ
′
2;σ
′
1, τ
′
1] +
+
∑
1
∑
α1,α2
∫
..
∫
dθ1dθ2dθ
′
1dθ
′
2G
(0)ir
2 [σ1, τ1;α1θ1|σ′
2τ
′
2α2θ
′
2]
×t̃α1
(1− x1|θ′1 − θ1)t̃α2
(x1 − 1|θ′2 − θ2)
×H ir
2
[
1− x′
1;α2, θ2;α1, θ
′
1|σ2, τ2;σ
′
1, τ
′
1
]
. (26)
Using the Fourier representation we obtain
H ir
2,q [σ1, iω1;σ
′
2, iω
′
2|σ2, iω2;σ
′
1, ω
′
1] =
−G
(0)ir
2 [σ1, iω1;σ2, iω2|σ′
2, iω
′
2;σ
′
1, iω
′
1] +
+ 1
β2
∑
ω′′
1
∑
ω′′
2
∑
α1α2
ξ2,q [α1, iω
′′
1 ;α2, iω
′′
2 ]G
(0)ir
2 [σ1, iω1;α1, iω
′′
1 |σ′
2, iω
′
2;α2, iω
′′
2 ]
×H ir
2,q [α2, iω
′′
2 ;α1, iω
′′
1 |σ2, iω2;σ
′
1, iω
′
1] .
(27)
Here we suppose diagonality by spin indices of the renormalized hopping elements
and an even symmetry of tight-binding electron energy ξ(k) = ξ(−k).
32
Diagram technique for the Hubbard model
Figure 4. The summation of the second class of ladder diagrams. a) Infinite series
of diagrams for the renormalized Hir
2 function. b) Graphical integral equation for
the renormalized H
ir
2 function.
Now we shall take into account the law of frequency conservation both for the
local and delocalized irreducible functions. The latter have the property
H ir
2,q [σ1, iω1;σ
′
2, iω
′
2|σ2, iω2;σ
′
1, iω
′
1] = βδ(ω1 + ω2 − ω′
2 − ω′
1)
×H̃ ir
2,q
[
σ1, iω1;σ
′
2, iω
′
2|σ2, iω2;σ
′
1,i(ω1 + ω2 − ω′
2
]
. (28)
Then we use in (27) and (28) new frequencies which obey the law:
ω′′
1 = ω′
2 +Ω1, ω′′
2 = ω1 +Ω1,
ω′
2 = ω2 + Ω, ω′
1 = ω1 − Ω. (29)
33
V.A.Moskalenko, L.Z.Kon
Here Ω and Ω1 are even Matsubara frequencies. On the basis of equations (27)-(29)
we obtain:
H̃ ir
2,q [σ, iω;σ
′
1, i(ω1 +Ω)|σ1, iω1;σ
′, i(ω − Ω)] =
−G̃
(0)ir
2 [σ, iω;σ1, iω1|σ′
1, i(ω1 + Ω), σ′, i(ω − Ω)]+
+ 1
β
∑
Ω1,α1,α2
G̃
(0)ir
2 [σ, iω;α1, i(ω1 +Ω1 + Ω)|σ′
1, i(ω1 +Ω);α2, i(ω +Ω1)]
×ξ2,−q [α1, i(ω1 + Ω1 + Ω);α2, i(ω + Ω1)]
×H̃ ir
2q [α2, i(ω + Ω1), α1, i(ω +Ω1 + Ω)|σ1, iω1;σ
′, i(ω −Ω)] .
(30)
The law of spin conservation is fulfilled here in the form σ + σ1 = σ′ + σ′
1
and σ + α1 = σ′
1 + α2. If we are interested in the case σ′ = σ, then we have to
discuss only the equalities σ′
1 = σ1 and σ + α1 = σ1 + α2. As a consequence, when
σ1 = σ wehave α1 = α2 = ±σ, but when σ1 = −σ we have α1 = −α2 = −σ.
The corresponding integral equations are the following:
H̃ ir
2,q [σ, iω;−σ, i(ω1 + Ω)| − σ, iω1;σ, i(ω − Ω)] =
−G̃
(0)ir
2 [σ, iω;−σ, iω1| − σ, i(ω1 + Ω);σ, i(ω − Ω)] +
+ 1
β
∑
Ω1
G̃
(0)ir
2 [σ, iω;−σ, i(ω1 − Ω1 + Ω)| − σ, i(ω1 + Ω);σ, i(ω − Ω1)]
×ξ2−q [−σ, i(ω1 − Ω1 +Ω);σ, i(ω − Ω1)]
×H̃ ir
2,q [σ, i(ω − Ω1);−σ, i(ω1 − Ω1 + Ω)| − σ, iω1;σ, i(ω −Ω)]
(31)
and
H̃ ir
2,q [σ, iω;σ, i(ω1 + Ω)|σ, iω1;σ, i(ω − Ω)] =
−G̃
(0)ir
2 [σ, iω;σ, iω1; |σ, i(ω1 +Ω), σ, i(ω − Ω)] +
+ 1
β
∑
Ω1
G̃
(0)ir
2 [σ, iω;σ, i(ω1 + Ω1 +Ω)|σ, i(ω1 + Ω);σ, i(ω +Ω1)]
×ξ2,−q [σ, i(ω1 + Ω1 + Ω);σ, i(ω + Ω1)]
×H̃ ir
2,q [σ, i(ω + Ω1), σ, i(ω1 + Ω1 + Ω)|σ, iω1, σ, i(ω − Ω)]+
+ 1
β
∑
Ω1
G̃
(0)ir
2 [σ, iω;−σ, i(ω1 + Ω1 +Ω)|σ, i(ω1 + Ω);−σ, i(ω + Ω1)]
×ξ2,−q [−σ, i(ω1 + Ω1 + Ω);−σ, i(ω + Ω1)]
×H̃ ir
2,q [−σ, i(ω + Ω1);−σ, i(ω1 +Ω1 + Ω)|σ, iω1;σ, i(ω −Ω)] .
(32)
In distinction from (31) equation (32) is not closed because a new function
with quite different spin indices appears in the right-hand side of it.
34
Diagram technique for the Hubbard model
Returning to equation (30), we can find the lacking equation:
H̃ ir
2,q [−σ, iω;−σ, i(ω1 +Ω)|σ, iω1;σ, i(ω − Ω)] =
−G̃
(0)ir
2 [−σ, iω;σiω1| − σ, i(ω1 + Ω);σ, i(ω − Ω)]
− 1
β
∑
Ω1
G̃
(0)ir
2 [−σ, iω;σ, i(ω1 + Ω1 + Ω)| − σ, i(ω1 + Ω);σ, i(ω + Ω1)]
×ξ2,−q [σ, i(ω1 + Ω1 + Ω);σ, i(ω + Ω1)]
×H̃ ir
2,q [σ, i(ω + Ω1);σ, i(ω1 + Ω1 + Ω)|σ, iω1;σ, i(ω − Ω)]
− 1
β
∑
Ω1
G̃
(0)ir
2 [−σ, iω;−σ, i(ω1 + Ω1 +Ω)| − σ, i(ω1 + Ω),−σ, i(ω + Ω1)]
×ξ2,−q [−σ, i(ω1 + Ω1 + Ω);−σ, i(ω + Ω1)]
×H̃ ir
2,q [−σ, i(ω + Ω1);−σ, i(ω1 +Ω1 + Ω)|σ, iω1;σ, i(ω −Ω)] .
(33)
Equation (32) and (33) have to be solved together, while (31) – separately. To
do that, it is necessary to know the kernels of these equations which are localized
irreducible two-particle Green functions.
In a special case of half-filling, when the number of electrons is equal to the
lattice sites number, the chemical potential of the system µ is equal to U
2
and,
supposing the independence of the on-site electron energy of a spin index, we have
[1] the following values for such irreducible functions:
G
(0)ir
2 (σ, iω1;σ, iω2|σ, iω3;σ, iω4) = δ(ω1 + ω2 − ω3 − ω4))
×β2µ2 [δ(ω1 − ω4) − δ(ω1 − ω3)]
(ω2
1 + µ2)(ω2
2 + µ2)
(34)
G
(0)ir
2 [σ, iω1;−σ, iω2| − σ, iω3;σ, iω4)] = βµδ(ω1 + ω2 − ω3 − ω4)
×{ βµδ(ω1 − ω4)(1 − eβµ)
(eβµ + 1)(ω2
1 + µ2)(ω2
2 + µ2)
− 2µβδ(ω1 − ω3)e
βµ
(eβµ + 1)(ω2
1 + µ2)(ω2
2 + µ2)
+
2µβδ(ω1 + ω2)
(ω2
1 + µ2)(ω2
3 + µ2)(eβµ + 1)
−2 [ω1ω2ω3ω4 − µ2(ω2
1 + ω2
2 + ω2
3 + ω1ω2 − ω2ω3 − ω1ω3)− 3µ4]
(ω2
1 + µ2)(ω2
2 + µ2)(ω2
3 + µ2)(ω2
4 + µ2)
} (35)
G
(0)ir
2 [σ, iω1;−σ, iω2|σ, iω3;−σ, iω4] = βµδ(ω1 + ω2 − ω3 − ω4)
{ βµδ(ω1 − ω3)(e
βµ − 1)
[ω2
1 + µ2] [ω2
2 + µ2] (eβµ + 1)
+
2µβeβµδ(ω1 − ω4)
(ω2
1 + µ2)(ω2
2 + µ2)(eβµ + 1)
− 2µβδ(ω1 + ω2)
(ω2
1 + µ2)(ω2
3 + µ2)(eβµ + 1)
+
2 [ω1ω2ω3ω4 − µ2(ω2
1 + ω2
2 + ω2
3 + ω1ω2 − ω1ω3 − ω2ω3) − 3µ4]
(ω2
1 + µ2)(ω2
2 + µ2)(ω2
3 + µ2)(ω2
4 + µ2)
}}. (36)
The corresponding functions with a simultaneous change of all the spin indices to
the opposite value are supposed to be identically equal to the initial ones because
of the independence of electron energies of a spin index.
35
V.A.Moskalenko, L.Z.Kon
Really, to find contribution ZII(x|x′) of these ladder diagrams to function
Z(x|x′) we have to extract some superfluous diagrams and, therefore, to deter-
mine a new function:
H2 [x1, x
′
2|x2, x
′
1] = H ir
2 [x1, x
′
2|x2, x
′
1] +G
(0)ir
2 [x1, x2|x′
2, x
′
1]
+
∑
11′22′
G
(0)ir
2 [x1, 1|x′
2, 2
′]G
(0)ir
2 [2, x2|1′, x′
1] t(2′ − 2) t(1′ − 1). (37)
The contribution of the second kind of the ladder diagrams to irreducible function
Z(x|x′) is
ZII(x1|x′
1) =
∑
x2x
1
2
t̃(x′
2 − x2)H2(x1, x
′
2|x2, x
′
1)]. (38)
The contribution of the both kinds of the ladder diagrams to the Z(x|x′) function
is
Z(x1|x′
1) ≃ ZI(x1|x′
1] + ZII [x1|x′
1]. (39)
There are also more complicated diagrams that must be taken into account to
obtain a more correct value of this function.
3. The coherent potential theory
In the given section attention is paid to the solution of the equation for one-
particle Green function in the coherent potential approximation. A special case of
half-filling, when the number of electrons is equal to the lattice sites number, is
considered. The following approach is taken into account: the renormalized quan-
tity Gir
2 is determined only by equation (22).
Applying expression (34) to the localized irreducible two-particle Green func-
tion, equation (22) can be solved and we obtain
G̃ir
2q [σ, iω;σ, iω1|σ, iω1;σ, iω] = β
a (iω; iω1) (1− δ (ω − ω1))
1− a (iω, iω1) ξ2,q [σ, iω;σ, iω1]
, (40)
where
a (iω, iω1) =
µ2
(ω2 + µ2) (ω2
1 + µ2)
.
On the basis of expressions (6), (21) and (40) function Λσ (q|ω) in this approxi-
mation can be found as
Λσ (q|iω) =
−iω
ω2 + µ2
− 1
N
1
β
∑
k1
∑
ω1
ξσ (k1 − q|iω1) β(1− δ(ω − ω1))
1− a (iω, iω1) ξ2,k1
[σ, iω;σ, iω1]
. (41)
In order to solve equation (41), the coherent potential approximation is used.
[11]. After analytical continuation (iω → E ) we obtain the following equation:
Λσ (0|E) =
−E
µ2 − E2
+
Tσ(E)a(E,E)
1− T 2
σ (E)a(E,E)
. (42)
36
Diagram technique for the Hubbard model
Here
Tσ(E) =
1
N
∑
q
ξ(q)
1− ξ(q)Λσ(0|E)
. (43)
It is convenient to determine function g(E) as
g(E) =
1−
√
1− λ2(E)
λ(E)
, (44)
where
Λσ(0|E)W = 2λσ(E),
λ↑(E) = λ↓(E) = λ(E).
W is the width of the band energy. Then,
Tσ(E) =
W
4
g(E)
(
g2(E) + 1
)
;λ(E) =
2g(E)
g2(E) + 1
and equation (42) may be rewritten as
2g(E)[1 − µ2a(E,E)(g2(E) + 1)3/(4v2)] =
−W
2
E(g2(E) + 1)/(µ2 −E2) [1− µ2a(E,E)(g2(E) + 1)2g2(E)/(4v2)] ,
(45)
where
v =
2µ
W
=
U
W
.
In order to obtain the condition for the Mott metal-dielectric transition we put
E = 0 in (45) and then obtain
2g̃(4v2 −
(
g̃2 + 1
)3
) = 0. (46)
Here
g̃ = g(E = 0).
From equation (46) it can be seen that the critical value of Coulomb interaction
is equal to vc =
1
2
. On the condition that v > vc the Mott metal-dielectric transition
takes place. This condition is reached on the basis of equation (22), taking into
account only a contribution of the irreducible function Gir.
2 with parallel spins.
Therefore, it is different from the one of work [2] by factor
√
3, in work [2] vc =
√
3
2
.
4. Conclusions
Our main concern was to investigate the properties of the systems with strong
electron correlations taking into account a special ladder kind of perturbation
theory’s diagrams.
We have obtained integral equations that realize the generalized random phase
approximation for different spin channels of the scattering processes and have
determined one-particle Green function.
37
V.A.Moskalenko, L.Z.Kon
One of these equations has been solved by using the coherent potential approx-
imation.
The exact solution of the integral equations can be done only for special as-
sumptions about the theory parameters and remains our next task.
References
1. M I.Vladimir, V.A Moskalenko, Teor. Matem. Fiz. 82, 428 (1990) [Theor. Math. Phys.
82, .301 (1990)].
2. S.I.Vacaru, M.I.Vladimir, V.A.Moskalenko, Theor. Matem. Fiz. 85, 248 (1990) [Theor.
Math. Phys. 85, 1185 (1990)].
3. S.P. Cojocaru, V.A. Moskalenko, Teor. Matem. Fiz. 97, .270 (1993)[Theor.Math.Phys.
97, 1290 (1993)].
4. V.A.Moskalenko, S.P.Cojocaru, M.I.Vladimir, A diagram technique for strongly inter-
action fermion systems. One and two-band Hubbard Models (1994), preprint ICTP,
IC/94/182, Trieste, Italy.
5. V.A.Moskalenko, Teor. Matem. Fiz. 110, 308 (1997) [Theor. Math. Phys. 110 , 243
(1997)].
6. J.Hubbard, J. Proc. Roy. Soc. A 276,.233 (1963).
7. P.A.Anderson, Phys. Rev. 124,.41 (1961).
8. P.M.Slobodyan, I.V.Stasyuk, Teor. Matem. Fiz. 19, 423 (1974) (in Russian).
9. R.O.Zaitsev, Zh.Eksp.Teor.Fiz. 68, 207 (1975), ibad 70, 1100.(1976).
10. Yu.A.Izyumov, Yu.M.Skryabin, Statistical Mechanics of magnetically ordered systems.
Moscow. (1987) (in Russian).
11. V.A.Moskalenko, L.Z.Kon, 3 rd General conference of the Balkan Physical Union
(BPU-3) Cluj-Napoca 25 sept., 381, 6P-041 (1997).
Діаграмна техніка в моделі Хаббарда. Драбинкове
наближення
В.А.Москаленко 1,2 , Л.З.Кон 2
1 Об’єднаний інститут ядерних досліджень, 141980 Дубна, Росія
2 Інститут прикладної фізики,
Молдова, 277028 м. Кишинів, вул. Гросул, 5
Отримано 20 березня 1998 р.
На основі узагальненої теореми Віка розроблено нову діаграмну тех-
ніку для систем з сильними електронними кореляціями. Кулонівське
відштовхування електронів в моделі Хаббарда розглядається як го-
ловна частина гамільтоніана і враховується в нульовому наближенні.
Матричний елемент міжвузлового перескоку електронів враховуєть-
ся як збурення. Досліджено одночастинкову мацубарівську функ-
38
Diagram technique for the Hubbard model
цію Гріна й отримано рівняння Дайсона. Новими елементами теорії,
що характерні для даного наближення, є багаточастинкові незвідні
функції Кубо. Вони обертаються в нуль, коли кулонівська взаємодія
рівна нулю. Головна мета даної роботи – це сумування драбинкових
діаграм, що враховують найбільш суттєві спінові і зарядові флуктуації
системи. Отримані інтегральні рівняння для двох каналів розсіяння.
Метод когерентного потенціалу використовується для спрощення і
розв’язування цих рівнянь. На цій основі встановлена умова перехо-
ду метал-діелектрик.
Ключові слова: узагальнена теорема Віка, драбинкові діаграми,
модель Хаббарда
PACS: 71.28.+d, 71.27.+a
39
40
|