Improved ansatz for the direct correlation function in dilute nematic colloids

We present an improved analytical ansatz for the colloid-nematic direct correlation function. This ansatz is more accurate than our earlier version, and yields numerical results that are very close to the true mean spherical approximation for dilute nematic colloids. Furthermore, the improved ansatz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Sokolovska, T.G., Sokolovskii, R.O., Patey, G.N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2007
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/118705
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Improved ansatz for the direct correlation function in dilute nematic colloids / T.G. Sokolovska, R.O. Sokolovskii, G.N. Patey // Condensed Matter Physics. — 2007. — Т. 10, № 3(51). — С. 407-414. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118705
record_format dspace
spelling irk-123456789-1187052017-06-01T03:05:53Z Improved ansatz for the direct correlation function in dilute nematic colloids Sokolovska, T.G. Sokolovskii, R.O. Patey, G.N. We present an improved analytical ansatz for the colloid-nematic direct correlation function. This ansatz is more accurate than our earlier version, and yields numerical results that are very close to the true mean spherical approximation for dilute nematic colloids. Furthermore, the improved ansatz is valid for external fields of any strength. We examine the zero-field behavior of the colloid-colloid potential of mean force in light of the improved ansatz, and show that at zero field and large separations this function decays as R⁻⁵ and grows as ∑⁶, where ∑ is the colloidal diameter. These dependencies are consistent with our earlier conclusions based on a less accurate version of the ansatz. As with the original ansatz, the improved version remains analytical and can be readily applied to a broad range of physically interesting systems. These include patterned and nonspherical colloids, colloids trapped at interfaces, and nematic fluids in confined geometries, e.g. in droplets. Ми представляємо покращений аналiтичний анзац для прямої кореляцiйної функцiї колоїд-нематик. Цей анзац є точнiшим нiж його попередня версiя, отримана нами, i дає числовi результати для розведених нематичних колоїдiв, що є дуже близькими до тих, якi отримуються в рамках справжнього середньо-сферичного наближення. Крiм того, покращений анзац є справедливим для випадку зовнiшнiх полiв довiльної сили. Ми вивчаємо поведiнку потенцiалу середньої сили колоїд-колоїд в нульовому полi, використовуючи покращений анзац i показуємо, що в нульовому полi i на великих вiддалях ця функцiя загасає як R⁻⁵ i росте як ∑⁶, де ∑ є дiаметром колоїда. Ця залежнiсть узгоджується з нашими попереднiми обчисленнями, якi базуються на менш точнiй версiї анзацу. Як i в попередньому випадку, покращена версiя залишається аналiтичною i може бути легко застосована до широкого класу фiзично цiкавих систем, якi включають колоїди з довiльним розподiлом сурфактантiв на поверхнi i несферичнi колоїди, колоїди при мiжфазнiй границi i нематичнi плини в обмежених геометрiях, наприклад в краплинах. 2007 Article Improved ansatz for the direct correlation function in dilute nematic colloids / T.G. Sokolovska, R.O. Sokolovskii, G.N. Patey // Condensed Matter Physics. — 2007. — Т. 10, № 3(51). — С. 407-414. — Бібліогр.: 15 назв. — англ. 1607-324X PACS: 61.30.Cz, 82.70.Dd, 61.30.Gd DOI:10.5488/CMP.10.3.407 http://dspace.nbuv.gov.ua/handle/123456789/118705 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present an improved analytical ansatz for the colloid-nematic direct correlation function. This ansatz is more accurate than our earlier version, and yields numerical results that are very close to the true mean spherical approximation for dilute nematic colloids. Furthermore, the improved ansatz is valid for external fields of any strength. We examine the zero-field behavior of the colloid-colloid potential of mean force in light of the improved ansatz, and show that at zero field and large separations this function decays as R⁻⁵ and grows as ∑⁶, where ∑ is the colloidal diameter. These dependencies are consistent with our earlier conclusions based on a less accurate version of the ansatz. As with the original ansatz, the improved version remains analytical and can be readily applied to a broad range of physically interesting systems. These include patterned and nonspherical colloids, colloids trapped at interfaces, and nematic fluids in confined geometries, e.g. in droplets.
format Article
author Sokolovska, T.G.
Sokolovskii, R.O.
Patey, G.N.
spellingShingle Sokolovska, T.G.
Sokolovskii, R.O.
Patey, G.N.
Improved ansatz for the direct correlation function in dilute nematic colloids
Condensed Matter Physics
author_facet Sokolovska, T.G.
Sokolovskii, R.O.
Patey, G.N.
author_sort Sokolovska, T.G.
title Improved ansatz for the direct correlation function in dilute nematic colloids
title_short Improved ansatz for the direct correlation function in dilute nematic colloids
title_full Improved ansatz for the direct correlation function in dilute nematic colloids
title_fullStr Improved ansatz for the direct correlation function in dilute nematic colloids
title_full_unstemmed Improved ansatz for the direct correlation function in dilute nematic colloids
title_sort improved ansatz for the direct correlation function in dilute nematic colloids
publisher Інститут фізики конденсованих систем НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/118705
citation_txt Improved ansatz for the direct correlation function in dilute nematic colloids / T.G. Sokolovska, R.O. Sokolovskii, G.N. Patey // Condensed Matter Physics. — 2007. — Т. 10, № 3(51). — С. 407-414. — Бібліогр.: 15 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT sokolovskatg improvedansatzforthedirectcorrelationfunctionindilutenematiccolloids
AT sokolovskiiro improvedansatzforthedirectcorrelationfunctionindilutenematiccolloids
AT pateygn improvedansatzforthedirectcorrelationfunctionindilutenematiccolloids
first_indexed 2025-07-08T14:29:32Z
last_indexed 2025-07-08T14:29:32Z
_version_ 1837089405694640128
fulltext Condensed Matter Physics 2007, Vol. 10, No 3(51), pp. 407–414 Improved ansatz for the direct correlation function in dilute nematic colloids T.G.Sokolovska1,2, R.O.Sokolovskii1,2, G.N.Patey1 1 Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 2 Institute for Condensed Matter Physics, 1 Svientsitskii Str., Lviv 79011, Ukraine Received May 25, 2007, in final form September 4, 2007 We present an improved analytical ansatz for the colloid-nematic direct correlation function. This ansatz is more accurate than our earlier version, and yields numerical results that are very close to the true mean spherical approximation for dilute nematic colloids. Furthermore, the improved ansatz is valid for external fields of any strength. We examine the zero-field behavior of the colloid-colloid potential of mean force in light of the improved ansatz, and show that at zero field and large separations this function decays as R −5 and grows as Σ 6, where Σ is the colloidal diameter. These dependencies are consistent with our earlier conclusions based on a less accurate version of the ansatz. As with the original ansatz, the improved version remains analytical and can be readily applied to a broad range of physically interesting systems. These include patterned and nonspherical colloids, colloids trapped at interfaces, and nematic fluids in confined geometries, e.g. in droplets. Key words: colloid, liquid crystal, nematic, potential of the mean force PACS: 61.30.Cz, 82.70.Dd, 61.30.Gd 1. Introduction to molecular modelling and correlations in nematic colloids Nematic colloids consist of colloidal particles suspended in nematic liquid crystal. These are of much current interest because the colloidal particles show a variety of structures that can be altered by varying physical factors such as the strength and direction of external fields [1,2]. Nematic colloids are intriguing from both fundamental and practical perspectives. All molecular interactions in the system are short-ranged, but colloidal particles effectively interact as oriented multipoles at long distances. In a way these systems are the inverse of fluids of charged particles, where the interaction potential is long-ranged but the correlations are short-ranged due to screening. We believe that the origin of such electrostatic-like behavior is the presence of long-range correlations in the bulk. In [3] we applied the Ornstein-Zernike (OZ) equation to nematic colloids to show how the electrostatic analogy asymptotically appears in the molecular theory of correlations. Our theory starts at the level of particle interactions modeled in a physically relevant way, and employs the Ornstein-Zernike and Lovett equations (OZL) for pair correlation functions and single-particle distributions. The general solution of these equations gives a description of long-range and short- range effects in nematic colloids, and takes account of orientational and density fluctuations. The approach can be equally applied to concentrated and dilute mixtures for colloidal particles of any size ranging from nanometers to micrometers. After the solution is obtained, the corresponding thermodynamics is available via exact relations of statistical mechanics [4,5]. The equilibrium single-particle distribution and pair correlation functions for nematic colloids are found by solving the OZ relationship, hαβ(1, 2) = cαβ(1, 2) + ∑ γ=C,N ∫ cαγ(1, 3)ργ(3)hγβ(3, 2)d(3), (1) combined with the exact Lovett equation [6]. In equation (1), cαβ and hαβ are the direct and total correlation functions, ρN(3), ρC(3) are the density distributions of the nematic (N) and c© T.G.Sokolovska, R.O.Sokolovskii, G.N.Patey 407 T.G.Sokolovska, R.O.Sokolovskii, G.N.Patey colloidal (C) components, and α, β represent C or N . Also, for a nematogen, the label 1 denotes the coordinates (R1, ω̂1), and for a spherical colloid 1 ≡ (R1). The functions in equation (1) describe all structural properties of the mixture at nanoscale and microscale levels. The exact OZ equation must be solved in conjunction with another approximate expression relating the total and direct correlation functions, such as the Percus-Yevick, hypernetted chain (HNC) or mean spherical approximation (MSA) closures. A closure is the only approximation that is necessary in the integral equation theory. For a dilute (ρC → 0) nematic colloid, the OZ equation takes the form, hαβ(1, 2) = cαβ(1, 2) + ∫ cαN (1, 3)ρN(3)hNβ(3, 2)d(3). (2) The physical meaning of all functions in equation (2) is clear; ρN(ω̂) gives the orientational distri- bution in a pure nematic, whereas, ρN(1)[1 + hNC(1, 2)] gives the complete distribution of nematic fluid about a colloidal particle. The latter function takes into account all changes at a given point R1 induced by the colloidal particle at R2; these include changes in the local density and in the orientational distribution of the nematic fluid. The colloid-colloid potential of mean force at the HNC level is conveniently given by φCC(1, 2) = [ cCC(1, 2) − hCC(1, 2) ] kBT + vCC(1, 2) , (3) where vCC(1, 2) is the direct pair interaction between the colloidal particles. We consider a model [7–9] consisting of a system of uniaxial particles [nematogens (N)] inter- acting through a pair potential taken to be the sum of a hard-sphere interaction (sphere diameter σ) and an anisotropic part defined by v(1, 2) = v2(R12)P2(ω̂1 · ω̂2), (4) where P2(ω̂1 · ω̂2) is the second-order Legendre polynomial, R12 is the center-center distance, the unit vector ω̂i denotes the orientation of particle i, and v2(R12) = −AN(zNσ)2 exp(−zNR12) R12/σ . (5) Here, AN and zN are the energy and the length parameters characterizing the interaction. The nematogen interaction with the external field is given by vN(1) = −W √ 5P2(ω̂1 · n̂), W > 0, (6) where W is the field strength. This interaction orders the bulk director n̂ parallel to the field. The OZL equations for this model have been solved analytically in the MSA [7,8]. The model colloidal particles (C) are taken to be hard spheres of diameter Σ. Van der Waals or other direct colloid-colloid interactions could easily be included through the vCC(1, 2) term in equation (3). The interaction of nematogens with the surface of a colloidal particle is modeled as vNC(1, 2) = { ∞, if s12 < σ/2, −AC exp[−zC(s12 − σ/2)]P2(ω̂1 · ŝ12), if s12 > σ/2, (7) where s12 is a vector connecting the nearest point of the surface of colloid 2 with the center of nematogen 1, and ŝ12 = s12/s12. Note that positive and negative values of AC favour, respectively, perpendicular and parallel orientations of nematogen molecules with respect to the surface. For zCσ = 1 the nematogen-colloid interaction range is of the order of the nematogen “length”. The strength of the nematogen-colloid interaction is determined by AC, and zC, and will vary for different surfactants. The magnitude of AC depends on the surfactant concentration on the colloidal surfaces. For micron and submicron colloids the solution of equation (2) can be greatly simplified for model (4–7). For this case we have suggested an ansatz, namely that the direct correlation function 408 Improved ansatz for the direct correlation function in dilute nematic colloids cCN(1, 2) can be taken from the wall-nematic solution that has been obtained for any orientation of the wall with respect to the field [9,10]. It is important that the solution was obtained subject to well defined boundary conditions at infinity: the director parallel to the field. This ansatz is very convenient because within the MSA the wall-nematic direct correlation function can be obtained in explicit form [11]. This permits explicit microscopic calculations of the density and orientational profiles [12], as well as effective interactions (potentials of mean force) between pairs of colloidal particles [13]. If the director n̂ is fixed parallel to the z-axis, the total correlation functions in the MSA are found in the form of spherical harmonic expansions, hNN(R12, ω̂1, ω̂2) = ∑ ll′=0,2 ∑ m hNN ll′m(R12)Ylm(ω̂1)Y ∗ l′m(ω̂2), (8) hCN(R12, ω̂2) = ∑ ll′=0,2 ∑ m hCN ll′m(R12)Ylm(R̂12)Y ∗ l′m(ω̂2). (9) If all correlation lengths are finite and smaller than the colloidal radius, the ansatz gives a very good approximation. A problem arises if some correlation length is larger than Σ. The correlation length of hNN 22|m|=1(R12) in the nematic phase depends on the external field W [3], ξ = √ K WρNS23 √ 5 , (10) where the elastic constant K and order parameter S2 are not sensitive to the influence of small fields. This means that in the case of zero field the correlation length is infinite. It was shown in [7] that these critical (Goldstone or elastic) correlations decrease at long distances as 1/R12. Moreover, they generate long-range asymptotes in hCN(R12, ω̂2) harmonics, in particular those that are coupled with hNN 22|m|=1(R12) through equation (2). Physically this means that a single colloidal particle induces long-range distortions in the distribution of surrounding nematic. Using the ansatz for the colloid-nematic direct correlation function we obtain [3] the following asymptote for the total correlation function at zero field and Σ � σ, hCN(1, 2) R→∞−→ 1 10 hWN 221 (s = σ/2) BzC Σ3 R3 [ Y21(R̂12)Y ∗ 21(ω̂2) + c.c. ] , (11) where hWN 221 (s = σ/2) is the contact value of the corresponding harmonic of the wall-nematic correla- tion function, and B can be expressed through the bulk elastic constant K and order parameter S2, B2 = 〈 |Y21|2 〉 ω βK 15ρNS2 2 . (12) The notation 〈. . . 〉ω indicates ∫ fN(ω̂)(. . . )dω̂, and fN(ω̂1) = ρN(1)/ρN is a single-particle dis- tribution function in the bulk. Finally, at the HNC level the asymptote of the effective colloidal interaction was found in [3] to be βφCC′ (R) R→∞−→ 8π 15 hWN 221 (s = σ/2) zC hW ′N 221 (s = σ/2) zC′ ρN 〈 |Y21|2 〉 ω Σ3Σ′3 R5 Y40(R̂). (13) As mentioned above, the ansatz is reliable when ξ < Σ, but may give inaccurate results at small fields, where ξ > Σ. We investigated the reliability of the ansatz in [11]. The test calculations were based on verification of an exact consequence of the impenetrability of hard cores, namely hCN(R12, ω̂2) = −1 if R12 < Σ+σ 2 . Thus, the exact condition implies that hCN 220(R12) = hCN 200(R12) = hCN 020(R12) = hCN 22m(R12) = 0, hCN 000(R12) = −1, (14) for R12 < (Σ + σ)/2. We found that since harmonics with |m| 6= 1 are not coupled with elastic bulk harmonics and are relatively short-ranged, for these harmonics our ansatz essentially satisfies 409 T.G.Sokolovska, R.O.Sokolovskii, G.N.Patey the core condition for colloidal sizes larger than 50σ for all system parameters considered. This is not the case for the harmonics hCN 22±1(R12). The problematic harmonics calculated with the ansatz are plotted in figure 1 for two colloid sizes, Σ = 50σ and 500σ, and small, W = 10−4kBT , and zero external fields. The colloidal length parameter zCσ = 0.2. The remaining model parameters are the same for all numerical calculations presented in this paper: zNσ = 1, AN = kBT , η = πρσ3/6 = 0.35 and AC/AN = 2. One can see that the condition (14) essentially holds at W = 10−4kBT for the larger particle, but not for Σ = 50σ. Note that the correlation length equals 161.5σ at the given field. In the zero field case, where ξ is infinite, the core condition is not well satisfied for colloidal particles of any size. Figure 1. Long-range harmonics of the colloid-nematic total correlation function hCN 221(R) for colloidal particles with Σ = 50σ and 500σ, at zero external field and at W = 10−4kBT . The parameter zCσ = 0.2. Clearly our ansatz requires improvement in the low field (large ξ) limit, and this is the purpose of the present paper. We show how the ansatz can be much improved and examine the consequences for the zero-field asymptotes defined by equations (10) and (12). 2. Corrected ansatz for small or zero fields Numerically, it is possible to correct the ansatz taken from the wall problem by introducing a single parameter. We scale the analytical expression for harmonics |m| = 1 inside the hard core, c̄CN 221(R12) ≈ qcWN 221 (s = R12 − Σ/2) for R12 < Σ + σ 2 , (15) and choose the coefficient q (0 < q < 1) such as to minimize ∫ (Σ+σ)/2 0 |h̄CN 221(R12)|dR12 . (16) Note that c̄CN 221(R12) outside the core remains the same and satisfies the MSA closure, cCN(R12, ω̂2) = −φCN(R12, ω̂2) kBT , if R12 > Σ + σ 2 . (17) The corrected ansatz appears to be very close to the true MSA solution of equation (2), even at zero field (see figure 2). We have calculated h̄CN 221(R12) with the corrected ansatz (15) for colloids with Σ = 500σ and different surface parameters. At zero field h̄CN 221(R12)/hCN 221(R12) ≈ 1.27 for zCσ = 1, and ≈ 1.23 for zCσ = 0.2 (figure 3). Numerically, we find that the deviation from 5/4 lies within 2 per cent. Thus for sufficiently large colloidal particles, the asymptote (11) can be easily 410 Improved ansatz for the direct correlation function in dilute nematic colloids Figure 2. Corrected long-range harmonics of the colloid-nematic total correlation function h̄CN 221(R) for colloidal particles with Σ = 50σ and 500σ, at zero external field and at W = 10−4kBT . The parameter zCσ = 0.2. Figure 3. The ratio of the corrected long-range harmonics of the colloid-nematic total correlation function to the uncorrected case, h̄CN 221(R12)/hCN 221(R12), at zero external field, for Σ = 500σ and for two ranges of the colloid-nematic interaction, zCσ = 1 and zCσ = 0.2. corrected at zero field by including a factor of 5/4. In experiments typical colloidal sizes are of order 103σ. The factor 5/4 is not accidental. Formally we can take the limit of zero field (ξ → ∞) for the case of the tilted wall (from equation (17) of [11]). In this case the asymptote of the wall-nematogen total correlation function tends to a constant value at large distances from the wall, lim ξ→∞ hWN(s, ω̂N) s→∞−→ lim ξ→∞ hWN 221 (s = σ/2) BzC [Y21(ŝ)Y ∗ 21(ω̂N) + c.c.] exp[(−s − σ/2)/ξ], (18) where the unit vector ŝ defines the orientation of the wall normal with respect to the field, and ω̂N is a molecule orientation. On the other hand, we can consider the limit of the distribution function around a spherical colloid [equation (10)] as Σ → ∞. Note that the limit of zero field, ξ → ∞, is taken first. At the distance s = R−Σ/2 outside the surface, Σ3/R3 tends to 8, since Σ → ∞ and s � Σ. By putting ŝ ≡ R̂12 and ω̂N ≡ ω̂2 one can see from equation (11) that lim ξ→∞ hWN 221 (s) = 5 4 lim Σ→∞ lim ξ→∞ hCN 221(s). (19) In other words, the order in which two limits are taken does matter if one uses the direct correlation function from the wall problem as an ansatz for spherical colloids. If the asymptote is corrected with 411 T.G.Sokolovska, R.O.Sokolovskii, G.N.Patey a factor of 5/4 the inconsistency does not appear. Following [3], one can see that any correction of asymptote (10) with a given factor results in a correction of asymptote (12) with the same factor squared. Thus, the asymptote of the potential of mean force should be corrected with a factor of (5/4)2. If the correlation length ξ is smaller than Σ, one would expect the fluid distribution about a colloid obtained with the ansatz to coincide with the distribution near the plane wall, at least for s � Σ. Our numerical analysis for Σ = 500σ, zcσ = 1 and distances up to several 10σ shows that this is true for βW = 10−4 and ξ = 161.5σ. The picture is different, however, for the smaller field, βW = 10−6, where ξ ∼ 1615σ is larger than Σ. In this case hWN 221 (s)/hCN 221(s) tends to 5/4 at s ≈ 10σ. We are especially interested in verifying the Σ-dependencies of the asymptotes (10) and (12), particularly because phenomenological theories appear to disagree on this matter. A theory with imposed weak boundary conditions at colloidal surfaces predicts the interaction of colloids (that exhibit up-down symmetry) to be proportional to Σ8 [14]. At the same time the theory of Lubensky et al. [15], based on rigid boundary conditions, predicts that the interactions behave as Σ6. Our molecular theory does not impose boundary conditions at colloidal surfaces, but instead calculates them. All information about any Σ-dependence is contained in the direct colloid-nematic correlation function. In fact the Σ-dependence of asymptote (10) at zero field is defined by the cCN 221 behavior at small k in Fourier space. The uncorrected ansatz gives the following expansion for large Σ at zero field [3], cCN 221(k) k→0−→ −4π hWN 221 (s = σ/2) 30zC B [ Σ3 + O(Σ2) ] k2 + O(k4). (20) To investigate further, we consider the expansion (20) for the corrected ansatz, which takes the form, c̄CN 221(k) k→0−→ [ 4π βAC(−1 + q) 75zC (Σ/2)4 + O(Σ3) ] k2 + O(k4). (21) The first impression is that the coefficient of k2 now has a Σ4-dependence. However, this turns out not to be true. Numerical calculations of (−1 + q)Σ were done for different Σ, up to 1500σ. For σ = 2nm, order of size of 5CB molecules, this corresponds to colloids of 3µm in diameter. We considered various interaction parameters (zCσ = 0.1, 0.2, 1, 2). In all cases the value of (−1+ q)Σ tends to a constant limit at large Σ (figure 4). In other words, the fact that q 6= 1 corrects asymptotes (10) and (12) with the factors 5/4 and (5/4)2, respectively, but does not change their Σ-dependence at zero field. Thus, the MSA results support the conclusion on the Σ-dependence reached in [15], where rigid boundary conditions were employed. It should be emphasized that in our model the calculated director distribution in the vicinity of colloids is not coupled rigidly with normals to the colloidal surface [12]. The full coefficient of k2 in equation (21) divided by Σ3/zC is plotted in figure 5 for different values of zCσ. One can see that a Σ3-dependence holds in all the cases for Σ > 500σ. 3. Summary and conclusions In this paper we have developed an improved ansatz for the colloid-nematogen direct correlation function. In our previous studies we suggested that a general solution of the Ornstein-Zernike equation for a nematic fluid in the presence of a wall, arbitrarily oriented with respect to the nematic director, can be very useful for the investigation of dilute nematic colloids. In fact, we suggested using the wall-nematogen direct correlation function, obtained explicitly in [11], as an ansatz for the direct correlation function in nematic colloids. This ansatz permits explicit microscopic calculations of the density and orientational profiles, as well as potentials of mean force for large colloidal particles, such as those used in numerous experiments. This ansatz works very well in the presence of external fields, when all correlation lengths are smaller than the colloidal radius. At small and zero external fields the results of this ansatz, particularly asymptotes at zero field, need some correction. The reason for this is that the “elastic” correlation length in the nematic phase is infinite at zero field. Here we suggest a simple scaling of the ansatz, which gives results 412 Improved ansatz for the direct correlation function in dilute nematic colloids Figure 4. The values of (−1 + q)Σ for vari- ous ranges of the colloid-nematic interaction, zCσ = 0.1, 0.2, 1, 2. Figure 5. The lim k→0 c̄CN 221(k)zC/(k2Σ3) at zero external field as a function of Σ for various ranges of the colloid-nematic interaction zCσ. numerically very close to the MSA solution of the OZ equation for nematic colloids in the presence of arbitrarily weak fields, including the zero field case. Our study of spherical colloids shows that the improved ansatz corrects asymptotes of the nematic distribution about a colloidal particle and the colloid-colloid potential of mean force with factors 5/4 and (5/4)2, respectively, but it does not change the dependence of the asymptotes on the colloidal diameter, or on the interparticle vector. Finally, the ansatz taken from the wall-nematic problem has some additional advantages. Unlike a direct solution of the OZ equation for nematic colloids, the same analytical expression can be used with little adjustments for physically different systems, e.g., nonspherical colloids, colloids with a nonuniform distribution of surface surfactant (patterned colloids), colloids trapped at interfaces, as well as nematic droplets. Acknowledgements Acknowledge is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. The financial support of the Natural Science and Engi- neering Research Council of Canada is gratefully acknowledged. This research has been enabled by the use of WestGrid computing resources, which are funded in part by the Canada Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education, and the participating research institutions. WestGrid equipment is provided by IBM, Hewlett Packard and SGI. References 1. Poulin P., Stark H., Lubensky T.C., Weitz D.A. Science, 1997, 275, 1770. 2. Smalyukh I.I., Lavrentovich O.D., Kuzmin A.N., Kachynski A.V., Prasad P.N. Phys. Rev. Lett., 2005, 95, 157801. 3. Sokolovska T.G., Sokolovskii R.O., Patey G.N., submitted to Phys. Rev. E. 4. Hansen J.P., McDonald I.R. Theory of Simple Liquids, 2nd ed. Academic, London, 1986. 5. Poniewierski A., Stecki J., Mol. Phys., 1979, 38, 1931. 6. Rowlinson J.S., Widom B. Molecular theory of capillarity. The international series of monographs on chemistry. Clarendon press, Oxford, 1989. 7. Holovko M.F., Sokolovska T.G., J. Mol. Liq., 1999, 82, 161. 8. Sokolovska T.G., Sokolovskii R.O., Holovko M.F. Phys. Rev. E, 2001, 64, 051710. 9. Sokolovska T.G., Sokolovskii R.O., Patey G.N., Phys. Rev. Lett., 2004, 92, 185508. 10. Sokolovska T.G., Sokolovskii R.O., Patey G.N., J. Chem. Phys., 2005, 122, 03470. 11. Sokolovska T.G., Sokolovskii R.O., Patey G.N., J. Chem. Phys., 2006, 125, 034903. 12. Sokolovska T.G., Sokolovskii R.O., Patey G.N., J. Chem. Phys., 2005, 122, 124907. 413 T.G.Sokolovska, R.O.Sokolovskii, G.N.Patey 13. Sokolovska T.G., Sokolovskii R.O., Patey G.N., Phys. Rev. E, 2006, 73, R020701. 14. Ruhwandl R.W., Terentjev E.M., Phys. Rev. E, 1997, 56, 5561. 15. Lubensky T.C., Pettey D., Currier N., Stark H., Phys. Rev. E, 1998, 57, 610. Покращений анзац для прямої кореляцiйної функцiї в розведених нематичних колоїдах Т.Г. Соколовська1,2, Р.О.Соколовський1,2, Г.Н.Пейтi1 1 Хiмiчний факультет, Унiверситет Британської Кулумбiї, Ванкувер, Канада 2 Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького 1, Львiв 79011, Україна Отримано 25 травня 2007 р., в остаточному виглядi – 4 вересня 2007 р. Ми представляємо покращений аналiтичний анзац для прямої кореляцiйної функцiї колоїд-нематик. Цей анзац є точнiшим нiж його попередня версiя, отримана нами, i дає числовi результати для роз- ведених нематичних колоїдiв, що є дуже близькими до тих, якi отримуються в рамках справжньо- го середньо-сферичного наближення. Крiм того, покращений анзац є справедливим для випадку зовнiшнiх полiв довiльної сили. Ми вивчаємо поведiнку потенцiалу середньої сили колоїд-колоїд в нульовому полi, використовуючи покращений анзац i показуємо, що в нульовому полi i на великих вiддалях ця функцiя загасає як R −5 i росте як Σ 6, де Σ є дiаметром колоїда. Ця залежнiсть узго- джується з нашими попереднiми обчисленнями, якi базуються на менш точнiй версiї анзацу. Як i в попередньому випадку, покращена версiя залишається аналiтичною i може бути легко застосо- вана до широкого класу фiзично цiкавих систем, якi включають колоїди з довiльним розподiлом сурфактантiв на поверхнi i несферичнi колоїди, колоїди при мiжфазнiй границi i нематичнi плини в обмежених геометрiях, наприклад в краплинах. Ключовi слова: колоїд, рiдкий кристал, нематик, потенцiал середньої сили PACS: 61.30.Cz, 82.70.Dd, 61.30.Gd 414