Thermal simulation of heterogeneous structural components in microelectronic devices

The steady state nonlinear problem of thermal conduction for isotropic strip with foreign rectangular inclusion that heats as an internal thermal source with heat dissipation has been considered. The methodology to solve this problem and its application for the specific dependence of the thermal-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Gavrysh, V.I., Fedasyuk, D.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2010
Schriftenreihe:Semiconductor Physics Quantum Electronics & Optoelectronics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/118738
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Thermal simulation of heterogeneous structural components in microelectronic devices / V.I. Gavrysh, D.V. Fedasyuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 439-443. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118738
record_format dspace
spelling irk-123456789-1187382017-06-01T03:04:45Z Thermal simulation of heterogeneous structural components in microelectronic devices Gavrysh, V.I. Fedasyuk, D.V. The steady state nonlinear problem of thermal conduction for isotropic strip with foreign rectangular inclusion that heats as an internal thermal source with heat dissipation has been considered. The methodology to solve this problem and its application for the specific dependence of the thermal-conductivity coefficients on temperature has been offered. 2010 Article Thermal simulation of heterogeneous structural components in microelectronic devices / V.I. Gavrysh, D.V. Fedasyuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 439-443. — Бібліогр.: 7 назв. — англ. 1560-8034 PACS 74.25.fc http://dspace.nbuv.gov.ua/handle/123456789/118738 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The steady state nonlinear problem of thermal conduction for isotropic strip with foreign rectangular inclusion that heats as an internal thermal source with heat dissipation has been considered. The methodology to solve this problem and its application for the specific dependence of the thermal-conductivity coefficients on temperature has been offered.
format Article
author Gavrysh, V.I.
Fedasyuk, D.V.
spellingShingle Gavrysh, V.I.
Fedasyuk, D.V.
Thermal simulation of heterogeneous structural components in microelectronic devices
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Gavrysh, V.I.
Fedasyuk, D.V.
author_sort Gavrysh, V.I.
title Thermal simulation of heterogeneous structural components in microelectronic devices
title_short Thermal simulation of heterogeneous structural components in microelectronic devices
title_full Thermal simulation of heterogeneous structural components in microelectronic devices
title_fullStr Thermal simulation of heterogeneous structural components in microelectronic devices
title_full_unstemmed Thermal simulation of heterogeneous structural components in microelectronic devices
title_sort thermal simulation of heterogeneous structural components in microelectronic devices
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/118738
citation_txt Thermal simulation of heterogeneous structural components in microelectronic devices / V.I. Gavrysh, D.V. Fedasyuk // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 439-443. — Бібліогр.: 7 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT gavryshvi thermalsimulationofheterogeneousstructuralcomponentsinmicroelectronicdevices
AT fedasyukdv thermalsimulationofheterogeneousstructuralcomponentsinmicroelectronicdevices
first_indexed 2025-07-08T14:33:44Z
last_indexed 2025-07-08T14:33:44Z
_version_ 1837089666077032448
fulltext Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443. © 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 439 PACS 74.25.fc Thermal simulation of heterogeneous structural components in microelectronic devices V.I. Gavrysh, D.V. Fedasyuk Lviv Polytechnic National University E-mail: fedasyuk@lp.edu.ua Abstract. The steady state nonlinear problem of thermal conduction for isotropic strip with foreign rectangular inclusion that heats as an internal thermal source with heat dissipation has been considered. The methodology to solve this problem and its application for the specific dependence of the thermal-conductivity coefficients on temperature has been offered. Keywords: isotropic, thermal conduction, foreign inclusion, thermosensitive, heat dissipation. Manuscript received 03.06.10; accepted for publication 02.12.10; published online 30.12.10. 1. Introduction In the design process of individual junctions and structural components for microelectronic devices, there appears the necessity to mathematically model thermal processes in thermosensitive structures with foreign inclusions that are one of the important parts in modern engineering researches. The construction and study of mathematical models for thermoconductivity processes in thermosensitive structures with foreign inclusions requires the development of new efficient methods to solve boundary mathematical physics problems of both theoretical and practical significance. The thermal process is nonlinear, and the presence of foreign inclusions complicates these mathematical models but increases the research accuracy, which is topical as to their heat resistance. This requires new algorithms for construction and appropriate software development for the temperature condition analysis of individual junctions and structural elements of electronic devices. In the process of solving the boundary thermal conductivity problems, it is important to consider the dependence of thermal-and-physical characteristics on temperature, which allows describing the distribution of temperature fields and their gradients in the systems under consideration to be more accurate and precise. The approximate analytical solution for half-space with a small foreign heat dissipating cylindrical inclusion was obtained in the paper [1]. The analytical solution for the isotropic strip with the rectangular inclusion of an arbitrary size is produced in the paper [2]. General thermal conductivity equations for the thermosensitive piecewise homogeneous solids are presented in the works [3, 4]. 2. Problem statement Due to the complex structure of separate junctions and construction elements in modern electronic devices the necessity in modeling of thermosensitive systems with foreign inclusions has arisen. Therefore we consider the isotropic thermosensitive strip with rectangular inclusion with square hl4 referred to the Cartesian coordinate system Oxy with its origin in the center of inclusion (Figure). At the coupling intervals   lyyhLx  :, ,   hxlxLy  :, , the conditions of ideal thermal contact are fulfilled. At the strip edges    xdlxK :, 1 ,   hxlxK  :, , the conditions of convective heat exchange with the constant environment temperature ct are given. In the inclusion area   lyhxyx  ,:,0 with uniformly distributed internal heat sources, the power is q0. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443. © 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 440 3. Partially linearized initial boundary problem The distribution of steady state temperature field ),( yxt in the thermosensitive strip is obtained by solving the nonlinear thermal conductivity equation [3, 4] ,),(),( ),,(),,( 0 lyNhxNq y t tyx yx t tyx x                        (1) taking into account the following boundary conditions:  cdly dly tt y t t       1 1 )(1 ,  cdly dly tt y t t       2 2 )(1 , 0 x t , 0   x x t , (2) where   ),(),()()()(),,( 101 lyNhxNttttyx  is the thermal conductivity coefficient of the heterogeneous strip; 10 , − heat conduction coefficients of the inclusion and strip;  − coefficient of heat elimination from the strip edges K ; )()(),(   SSN ; )(S − asymmetric unit functions. Input the function [5]                                       xhSlySd lySd lyNdd lxt lht lxt lht yxt yht yxt                       , , 10 , , 10 , , 10 , 0 1 , (3) and obtain by differentiating with respect to х and у:                             ., ,, , ,, 10 10 10 lyNxhS y t tt x t yxt y xhSlyS x t tt lyS x t tt x t yxt x hx ly ly                                                    (4) Considering the expressions (4) and equation (1), we can write:                              ., , 10 0 10 10                                                                    lyNxhS y t tt y lyNxhSq xhSlyS x t tt lyS x t tt x hx ly ly (5) Here,  is the Laplace operator.  cdly dly tt y      1 1 , 0 x , 0   xx ,  cdly dly tt y      2 2 . (6) Hence, the nonlinear boundary equations (1), (2) with application of the input function (3) can be reduced to a partially linearized problem (5), (6). 4. Fully linearized boundary problem Let us approximate ),,(),,(),,( 1dlxtlxtyht  ),( 2dlxt  functions with the following expressions ,)()(),( ,)()(),( ),()(),( ),()(),( 1 1 )()( 1 )( 12 1 1 )()( 1 )( 11 )( 1 1 )( 1 )( 1 )( 1 1 )( 1 )( 1                                   m k kkk m k kkk j l j n j l j l j h j n j h j h xxStttdlxt xxStttdlxt xxStttlxt yyStttyht (7) where )()()()( ,,,  kk l j h j tttt are unknown approximating temperature values  ;, lly j  ;... 121  nyyy    ;,0,0, hhx j  ;... 121  nxxx  ;,0 *xxk  ;... 121  mxxx *x is the abscissa value for which the temperature is practically equal to ct (is obtained from the relevant linear problem); n – number of partitions in the intervals  ll, ,  0,h and  h,0 , m – number of partitions in the interval  *,0 x . Substituting expressions (7) in the equation (5) and boundary conditions (6) at the edges of strip K , a linear boundary problem for finding the function  is obtained Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443. © 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 441       ),,(|)|( )(|)|()()()( )()()()()( )()()()()( 0 1 1 )( 11 )( 10 )()( 1 )( 11 )( 10 1 1 )()( 1 1 1 )( 11 )( 10 )()( 1 lyNxhSq yyxhStttt lySxxtttt lySxxtttt n j j h j h j h j h j j l j l j n j l j l j j n j l j l j l j l j                               (8) ,)()( ,)()( 1 1 )()( 1 )( 1 1 1 )()( 1 )( 1 2 1                                         c m k kkk dly c m k kkk dly txxSttt y txxSttt y (9) ,0 ||  x 0 ||    xx , where )( is the asymmetric Dirac delta function . 5. Construction of analytical solution to the linear boundary problem (8), (9) Applying the Fourier integral transform by the x coordinate for the boundary problem (8), (9), we obtain the ordinary differential equations with constant coefficients:                        )( , sh2 )( )( 2 1 )()( 1 1 1 )( 11 )( 100 1 1 )()( 1 )( 11 )( 10 )()( 1 1 1 )( 11 )( 10 2 2 2 j h j h j n j h j h j n j l j l j l j l j xi l j l j n j l j l j xi yytt ttlyNq hi lyStttte lyStt ttei y j j                                                                (10) and the following boundary conditions: ,)( 2 ,)( 2 1 1 )()( 1 1 1 )()( 1 2 1                           m k xi kk dly m k xi kk dly k k ett i y ett i y (11) where        dxe xi 2 1 − function  transformant; 1i . The general solution to the equation (10) is:                  .)()(ch)()(ch),( )()(ch )()(sh2 )()(ch1 )()( )()(ch1 )()( 2 1 2 0)()( 1 1 1 )( 11 )( 10 )()( 1 1 1 )( 11 )( 10 )()( 1 1 1 )( 11 )( 10 21 lySlylySlylyN q yySyytt tthi lySlytt tte lySlytt tte i eCeC jj h j h j n j h j h j l j l j n j l j l j xi l j l j n j l j l j xi yy j j                                                    Here C1 and C2 are integrating constants. Having applied the boundary conditions (11), a partial solution to the problem (10), (11) is obtained                                            .)(ch )(ch 2sh 1 )(ch 2sh sh2sh )()(ch)()(ch),( )(ch 2sh sh )()(ch )()(sh2 )(ch 2sh sh )()(ch1 )()( )(ch 2sh 2sh )()(ch1 )()( 2 1 1 1 21 1 1 21 21 2 21 21 2 0 2 21 1 1 1 )( 11 )( 10 )()( 1 2 21 2 1 1 )()( 1 )( 11 )( 10 2 21 1 )()( 1 1 1 )( 11 )( 10                                                                                                                     m k xi kk m k xi kk j jj n j h j h j h j h j n j l j l j l j l j xi l j l j n j l j l j xi dlyett dlyett ddl dly ddl ddl lySlylySlylyN q dly ddl ydl yySyy tttthi dly ddl d lySly tttte dly ddl dl lySly tttte i k k j j (12) Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443. © 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 442 Applying the inverse Fourier transform to the relation (12), the following expression for the function  could be found:                                                              .)(ch 2sh sin )(ch 2sh sin )(ch 2sh sh2sh )()(ch )()(ch, sinsin )(ch 2sh sh )()(ch sinsin )()( )(ch 2sh sh )()(ch1 sin )()( )(ch 2sh 2sh )()(ch1 sin )()( 1 1 1 1 0 21 21 2 0 21 2 1 1 1 2 21 21 0 0 2 21 1 1 1 0 )( 11 )( 10 )()( 1 2 21 2 1 1 0 )()( 1 )( 11 )( 10 2 21 1 0 1 1 )( 11 )( 10 )()( 1                                                                                                                     m k k kk k m k kk j jj n j h j h j h j h j n j jl j l j l j l j j n j l j l j l j l j ddly ddl xx tt ddly ddl xx tt ddly ddl ddl lySly lySlylyN hxhx q ddly ddl ydl yySyy hxhx tttt ddly ddl d lySly xx tttt ddly ddl dl lySly xx tttt (13) Substituting the specific subjection coefficients of inclusion materials and strip thermal conduction in the relation (3), (13) and equalizing the expressions of  - function on the edges K and on contact intervals  xL ,  yL the system of nonlinear algebraic equations to determine unknown values of temperature )( h jt  , ),1()( njt l j  , )( kt , ),1()( mktk  is obtained. The desired temperature field for the nonlinear boundary heat conduction problem (1), (2) is determined from the nonlinear algebraic equation obtained after the application of relations (3), (13) and substitution of the specific expressions for coefficient dependences of thermal conductivity inherent to inclusion and strip materials. 6. Partial examples and analysis of the results There is such a dependency between the coefficient of thermal conductivity and temperature in many practical cases [6, 7]: )1(0 kt , where k,0 are reference and temperature coefficients for the thermal conductivity. Then, applying expressions (3), (13), the formula to determine the temperature t in areas is obtained   lyhxyx  ,:,0 , 0 10 0 0211 k k t             ,   121 ,:, dlydlhxyx  ,   lydlhxyx  22 ,:, , 1 0 1 12 11 k k t     ,   13 ,:, dlylhxyx  , 1 10 1 1211 k k t             , where ; 2 1 1 2 1 1 2 1 1 10 0 0 1 00 0 0 1 010 0 0 1 0 0 0 1 010 0 0 1 0 0 0 1* 1 ly hx ly hx ttkk ttkk ttkk                                                                                                       ; 2 11 ; 2 11 1 0 1 1 1 0 1 1 k k t k k t ly ly hx hx             ; 2 11 1 0 1 1 k k t ly hx ly hx         0 30 0 0211 k k t ly ly                ; Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443. © 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 443 y d l2 d 2h O x Fig. Thermosensitive strip with rectangular inclusion. . 2 1 1 2 1 1 2 1 1 ; 2 1 1 2 1 1 2 1 1 2 1 1 || 0 0 0 1 100 0 0 1 || 00 0 0 1 10 0 0 1 00 0 0 1 10 0 0 1* 3 || 10 1 0 0 00 1 0 0 || 0 1 0 0 010 1 0 0 10 1 0 0 00 1 0 0 0 1 0 0 010 1 0 0* 2 lz hx lz hx lz lz hx lz hx lz lz ttkk ttkk ttkk ttkk ttkk ttkk ttkk                                                                                                                                                                                                                                              Being based on numerical analysis, it has been determined that it is enough to select the partition number n of the intervals  ll; ,  0;h and  h;0 that equals seven and the partition number m of the interval  *;0 x that equals eleven. Numerical calculations have been performed for the following materials: strip material – ceramics VK-94-1, the inclusion material – tungsten, which show that the consideration of dependency of the thermal conductivity coefficients on temperature leads to reduction of the temperature field compared with non-thermosensitive system (thermal- and-physical parameters are independent on temperature) by 3.8% for selected materials. 7. Conclusions The original nonlinear heat conductivity equation (1) has been partially linearized using the relation (3) that describes a new input function  . The proposed piecewise linear approximation of temperature on the boundaries  xL ,  yL of an inclusion and at the edges K of the strip with the expressions (7) that allowed to totally linearize the nonlinear boundary problem of thermal conductivity (5), (6) for a thermosensitive system with the foreign inclusion. An analytical solution to the input function  has been produced as a formula (3), which enabled to construct new algorithms and developed software to evaluate the temperature gradients in the area of foreign inclusion and to forecast the operation mode of electronic devices with increased thermal resistance and prolonged operating period. References 1. Yu.M. Kolyano, Yu.M. Krychevets, E.H. Ivanyk, V.I. Gavrysh, Temperature field in half-space with foreign inclusion // Inzhenerno-fizich. zhurnal (Minsk) 55 (6), p. 1006-1011 (1988) (in Russian). 2. V.I. Gavrysh, V.A. Volos, The problem of the strip with rectangular inclusions heat conductivity // The Lviv Polytechnic State University Bulletin: Applied Mathematics. No. 320, p. 28-33 (1997) (in Ukrainian). 3. Ya.M. Podstryhach, V.A. Lomakin, Yu.M. Kolya- no, Thermoelasticity of Heterogeneous Body Structure. Nauka. Moscow, 1984 (in Russian). 4. Yu.M. Kolyano, Methods of Heat Conductivity and Thermoelasticity of Heterogeneous Bodies. Naukova Dumka, Kyiv (1992) (in Russian). 5. D. Fedasyuk, V. Gavrysh, A. Kuzmin, Non-linear heat exchange problem for the piecewise homo- geneous strip with foreign inclusion // Proc. Intern. Conference “Modern Problems of Mechanics and Mathematics”, vol. 1, Lviv, 2008 (in Ukrainian). 6. V.A. Lomakin, The Theory of Thermoelasticity of Heterogeneous Bodies. Moscow University Publishing House, Moscow, 1976 (in Russian). 7. R. Berman, Heat Conductivity of Solids. Mir, Moscow, 1979 (in Russian). Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443. PACS 74.25.fc Thermal simulation of heterogeneous structural components in microelectronic devices V.I. Gavrysh, D.V. Fedasyuk Lviv Polytechnic National University E-mail: fedasyuk@lp.edu.ua Abstract. The steady state nonlinear problem of thermal conduction for isotropic strip with foreign rectangular inclusion that heats as an internal thermal source with heat dissipation has been considered. The methodology to solve this problem and its application for the specific dependence of the thermal-conductivity coefficients on temperature has been offered. Keywords: isotropic, thermal conduction, foreign inclusion, thermosensitive, heat dissipation. Manuscript received 03.06.10; accepted for publication 02.12.10; published online 30.12.10. 1. Introduction In the design process of individual junctions and structural components for microelectronic devices, there appears the necessity to mathematically model thermal processes in thermosensitive structures with foreign inclusions that are one of the important parts in modern engineering researches. The construction and study of mathematical models for thermoconductivity processes in thermosensitive structures with foreign inclusions requires the development of new efficient methods to solve boundary mathematical physics problems of both theoretical and practical significance. The thermal process is nonlinear, and the presence of foreign inclusions complicates these mathematical models but increases the research accuracy, which is topical as to their heat resistance. This requires new algorithms for construction and appropriate software development for the temperature condition analysis of individual junctions and structural elements of electronic devices. In the process of solving the boundary thermal conductivity problems, it is important to consider the dependence of thermal-and-physical characteristics on temperature, which allows describing the distribution of temperature fields and their gradients in the systems under consideration to be more accurate and precise. The approximate analytical solution for half-space with a small foreign heat dissipating cylindrical inclusion was obtained in the paper [1]. The analytical solution for the isotropic strip with the rectangular inclusion of an arbitrary size is produced in the paper [2]. General thermal conductivity equations for the thermosensitive piecewise homogeneous solids are presented in the works [3, 4]. 2. Problem statement Due to the complex structure of separate junctions and construction elements in modern electronic devices the necessity in modeling of thermosensitive systems with foreign inclusions has arisen. Therefore we consider the isotropic thermosensitive strip with rectangular inclusion with square hl 4 referred to the Cartesian coordinate system Oxy with its origin in the center of inclusion (Figure). At the coupling intervals ( ) { } l y y h L x £ ± = ± : , , ( ) { } h x l x L y £ ± = ± : , , the conditions of ideal thermal contact are fulfilled. At the strip edges ( ) { } ¥ < + = + x d l x K : , 1 , ( ) { } h x l x K £ ± = - : , , the conditions of convective heat exchange with the constant environment temperature c t are given. In the inclusion area ( ) { } l y h x y x £ £ = W , : , 0 with uniformly distributed internal heat sources, the power is q0. 3. Partially linearized initial boundary problem The distribution of steady state temperature field ) , ( y x t in the thermosensitive strip is obtained by solving the nonlinear thermal conductivity equation [3, 4] , ) , ( ) , ( ) , , ( ) , , ( 0 l y N h x N q y t t y x y x t t y x x × × - = = ú û ù ê ë é ¶ ¶ × l ¶ ¶ + ú û ù ê ë é ¶ ¶ × l ¶ ¶ (1) taking into account the following boundary conditions: ( ) c d l y d l y t t y t t - × a - = ¶ ¶ × l + = + + = 1 1 ) ( 1 , ( ) c d l y d l y t t y t t - × a = ¶ ¶ × l - - = - - - = 2 2 ) ( 1 , 0 = ¥ ® x t , 0 = ¶ ¶ ¥ ® x x t , (2) where [ ] ) , ( ) , ( ) ( ) ( ) ( ) , , ( 1 0 1 l y N h x N t t t t y x × × l - l + l = l is the thermal conductivity coefficient of the heterogeneous strip; 1 0 , l l − heat conduction coefficients of the inclusion and strip; ± a − coefficient of heat elimination from the strip edges ± K ; ) ( ) ( ) , ( h - z - h + z = h z + - S S N ; ) ( z ± S − asymmetric unit functions. Input the function [5] ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) x h S l y S d l y S d l y N d d l x t l h t l x t l h t y x t y h t y x t - × ï þ ï ý ü - × z z l - z l + + + × z z l - z l - ï î ï í ì - × z z l - z l + z z l = J - ± + - - ± - ± ò ò ò ò , , 1 0 , , 1 0 , , 1 0 , 0 1 , (3) and obtain by differentiating with respect to х and у: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) . , , , , , , 1 0 1 0 1 0 l y N x h S y t t t x t y x t y x h S l y S x t t t l y S x t t t x t y x t x h x l y l y × - ´ ´ þ ý ü î í ì ¶ ¶ l - l - ¶ ¶ l = ¶ J ¶ - × ï þ ï ý ü + × ú û ù ê ë é ¶ ¶ l - l - ï î ï í ì - - × ú û ù ê ë é ¶ ¶ l - l + + ¶ ¶ l = ¶ J ¶ - = - - - = + = (4) Considering the expressions (4) and equation (1), we can write: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) . , , 1 0 0 1 0 1 0 ï þ ï ý ü ï î ï í ì × - × ú û ù ê ë é ¶ ¶ × l - l ¶ ¶ - - × - × - - ï þ ï ý ü - × ú ú û ù + × ÷ ø ö ç è æ ¶ ¶ × l - l × - ï î ï í ì ê ê ë é - - × ÷ ø ö ç è æ ¶ ¶ × l - l ¶ ¶ = J D - = - - - - = + = l y N x h S y t t t y l y N x h S q x h S l y S x t t t l y S x t t t x h x l y l y (5) Here, D is the Laplace operator. ( ) c d l y d l y t t y - × a - = ¶ J ¶ + = + + = 1 1 , 0 = J ¥ ® x , 0 = ¶ J ¶ ¥ ® x x , ( ) c d l y d l y t t y - a - = ¶ J ¶ - - = - - - = 2 2 . (6) Hence, the nonlinear boundary equations (1), (2) with application of the input function (3) can be reduced to a partially linearized problem (5), (6). 4. Fully linearized boundary problem Let us approximate ), , ( ), , ( ), , ( 1 d l x t l x t y h t + ± ± ) , ( 2 d l x t - - functions with the following expressions , ) ( ) ( ) , ( , ) ( ) ( ) , ( ), ( ) ( ) , ( ), ( ) ( ) , ( 1 1 ) ( ) ( 1 ) ( 1 2 1 1 ) ( ) ( 1 ) ( 1 1 ) ( 1 1 ) ( 1 ) ( 1 ) ( 1 1 ) ( 1 ) ( 1 å å å å - = - - - + - - = - + + + + - ± - = ± + ± - ± - = ± + ± - - + = - - - - + = + - × - + = ± - × - + = ± m k k k k m k k k k j l j n j l j l j h j n j h j h x x S t t t d l x t x x S t t t d l x t x x S t t t l x t y y S t t t y h t (7) where ) ( ) ( ) ( ) ( , , , - + ± ± k k l j h j t t t t are unknown approximating temperature values ] [ ; , l l y j - Î ; ... 1 2 1 - < < < n y y y ] [ ] [ ; , 0 , 0 , h h x j - Î ; ... 1 2 1 - < < < n x x x ] [ ; , 0 * x x k Î ; ... 1 2 1 - < < < m x x x * x is the abscissa value for which the temperature is practically equal to c t (is obtained from the relevant linear problem); n – number of partitions in the intervals ] [ l l , - , ] [ 0 , h - and ] [ h , 0 , m – number of partitions in the interval ] [ * , 0 x . Substituting expressions (7) in the equation (5) and boundary conditions (6) at the edges of strip ± K , a linear boundary problem for finding the function J is obtained [ ] [ ] [ ] ), , ( |) | ( ) ( |) | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 0 1 1 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 ) ( 1 1 ) ( 1 0 1 1 ) ( ) ( 1 1 1 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 l y N x h S q y y x h S t t t t l y S x x t t t t l y S x x t t t t n j j h j h j h j h j j l j l j n j l j l j j n j l j l j l j l j × - × - - - d ¢ × - × l - l × - - - + - d ¢ × l - l × - - - - × - d ¢ × l - l × - = J D - - = - - ± + ± + ± ± + - - - + - + - = - - + + - - = + + + å å å (8) , ) ( ) ( , ) ( ) ( 1 1 ) ( ) ( 1 ) ( 1 1 1 ) ( ) ( 1 ) ( 1 2 1 ú ú û ù ê ê ë é - - × - + × a = ¶ J ¶ ú ú û ù ê ê ë é - - × - + × a - = ¶ J ¶ å å - = - - - + - - - - = - = - + + + + + + = c m k k k k d l y c m k k k k d l y t x x S t t t y t x x S t t t y (9) , 0 | | = J ¥ ® x 0 | | = ¶ J ¶ ¥ ® x x , where ) ( z d - is the asymmetric Dirac delta function . 5. Construction of analytical solution to the linear boundary problem (8), (9) Applying the Fourier integral transform by the x coordinate for the boundary problem (8), (9), we obtain the ordinary differential equations with constant coefficients: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ] } ) ( , sh 2 ) ( ) ( 2 1 ) ( ) ( 1 1 1 ) ( 1 1 ) ( 1 0 0 1 1 ) ( ) ( 1 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 1 1 ) ( 1 1 ) ( 1 0 2 2 2 j h j h j n j h j h j n j l j l j l j l j x i l j l j n j l j l j x i y y t t t t l y N q h i l y S t t t t e l y S t t t t e i y j j - d ¢ × - ´ ê ê ë é ´ l - l + × × x x + + ú ú û ù - × - × l - l - - + × - ´ ï î ï í ì ê ê ë é ´ l - l × x × p = J x - ¶ J ¶ - ± ± + - = ± + ± + - = + + + + + + + + x - - - + - = - + - + x å å å × × (10) and the following boundary conditions: , ) ( 2 , ) ( 2 1 1 ) ( ) ( 1 1 1 ) ( ) ( 1 2 1 å å - = x - - + - - - = - = x + + + + + = × + × px a - = ¶ J ¶ × + × px a - = ¶ J ¶ m k x i k k d l y m k x i k k d l y k k e t t i y e t t i y (11) where ò ¥ ¥ - x J × p = J dx e x i 2 1 − function J transformant; 1 - = i . The general solution to the equation (10) is: [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) ] } . ) ( ) ( ch ) ( ) ( ch ) , ( ) ( ) ( ch ) ( ) ( sh 2 ) ( ) ( ch 1 ) ( ) ( ) ( ) ( ch 1 ) ( ) ( 2 1 2 0 ) ( ) ( 1 1 1 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 1 1 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 1 1 ) ( 1 1 ) ( 1 0 2 1 l y S l y l y S l y l y N q y y S y y t t t t h i l y S l y t t t t e l y S l y t t t t e i e C e C j j h j h j n j h j h j l j l j n j l j l j x i l j l j n j l j l j x i y y j j - × - x + + × + x - ´ ´ x - - - × - x - ´ ê ê ë é ´ l - l × x - - - × - x - × - ´ ´ l - l × - - + × + x - × - ´ ï î ï í ì ´ l - l × ´ ´ x × p - × + × = J + - - ± ± + - = ± + ± + + + - = + + x - - - + - = - + - + x x - x å å å Here C1 and C2 are integrating constants. Having applied the boundary conditions (11), a partial solution to the problem (10), (11) is obtained [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) . ) ( ch ) ( ch 2 sh 1 ) ( ch 2 sh sh 2 sh ) ( ) ( ch ) ( ) ( ch ) , ( ) ( ch 2 sh sh ) ( ) ( ch ) ( ) ( sh 2 ) ( ch 2 sh sh ) ( ) ( ch 1 ) ( ) ( ) ( ch 2 sh 2 sh ) ( ) ( ch 1 ) ( ) ( 2 1 1 1 2 1 1 1 2 1 2 1 2 2 1 2 1 2 0 2 2 1 1 1 1 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 2 2 1 2 1 1 ) ( ) ( 1 ) ( 1 1 ) ( 1 0 2 2 1 1 ) ( ) ( 1 1 1 ) ( 1 1 ) ( 1 0 ï þ ï ý ü ú ú û ù - - x - a + ê ê ë é + + + x - a ´ ´ + + x x + ú ú û ù ÷ ÷ ø ö + + x + + x x - + x + + - × - x + + × + x - × x - - ÷ ÷ ø ö ç ç è æ + + x + + x - + x - - × - x ´ ´ ê ê ë é l - l × - × x - - ú û ù ê ë é + + x + + x x + - - x - ´ ´ - l - l × - - ú û ù ê ë é + + x + + x + x + + + x - ´ ´ ï î ï í ì - × l - l × × x × p - = J å å å å å - = x - - + - - = x + + + + + - - - = ± + ± + ± ± + + - = + + + x - - - + - = - + - + x m k x i k k m k x i k k j j j n j h j h j h j h j n j l j l j l j l j x i l j l j n j l j l j x i d l y e t t d l y e t t d d l d l y d d l d d l l y S l y l y S l y l y N q d l y d d l y d l y y S y y t t t t h i d l y d d l d l y S l y t t t t e d l y d d l d l l y S l y t t t t e i k k j j (12) Applying the inverse Fourier transform to the relation (12), the following expression for the function J could be found: ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) . ) ( ch 2 sh sin ) ( ch 2 sh sin ) ( ch 2 sh sh 2 sh ) ( ) ( ch ) ( ) ( ch , sin sin ) ( ch 2 sh sh ) ( ) ( ch sin sin ) ( ) ( ) ( ch 2 sh sh ) ( ) ( ch 1 sin ) ( ) ( ) ( ch 2 sh 2 sh ) ( ) ( ch 1 sin ) ( ) ( 1 1 1 1 0 2 1 2 1 2 0 2 1 2 1 1 1 2 2 1 2 1 0 0 2 2 1 1 1 1 0 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 2 2 1 2 1 1 0 ) ( ) ( 1 ) ( 1 1 ) ( 1 0 2 2 1 1 0 1 1 ) ( 1 1 ) ( 1 0 ) ( ) ( 1 ï þ ï ý ü x - - x + + x × x - x - a + + x + + x + + x × x - x - a + + x ú û ù + + x + + x x - + x + - × - x + + + × + x - x + x - - x + + x ú û ù ê ë é + + x + + x - + x - - - x ´ ´ x + x - - x l - l × - - - x ú û ù ê ë é + + x + + x x + - - x - ´ ´ x - x - l - l - - x ú û ù ê ë é + + x + + x + x + + + x - ´ ´ x - x ï î ï í ì l - l × - × p - = J å ò ò å ò å ò å ò ò å - = ¥ - - + - ¥ - = + + + + + - ¥ - - = ¥ ± + ± + ± ± + + - = ¥ + + + - ¥ - = - + - + - - + m k k k k k m k k k j j j n j h j h j h j h j n j j l j l j l j l j j n j l j l j l j l j d d l y d d l x x t t d d l y d d l x x t t d d l y d d l d d l l y S l y l y S l y l y N h x h x q d d l y d d l y d l y y S y y h x h x t t t t d d l y d d l d l y S l y x x t t t t d d l y d d l d l l y S l y x x t t t t (13) Substituting the specific subjection coefficients of inclusion materials and strip thermal conduction in the relation (3), (13) and equalizing the expressions of J -function on the edges ± K and on contact intervals ± x L , ± y L the system of nonlinear algebraic equations to determine unknown values of temperature ) ( h j t ± , ) , 1 ( ) ( n j t l j = ± , ) ( - k t , ) , 1 ( ) ( m k t k = + is obtained. The desired temperature field for the nonlinear boundary heat conduction problem (1), (2) is determined from the nonlinear algebraic equation obtained after the application of relations (3), (13) and substitution of the specific expressions for coefficient dependences of thermal conductivity inherent to inclusion and strip materials. 6. Partial examples and analysis of the results There is such a dependency between the coefficient of thermal conductivity and temperature in many practical cases [6, 7]: ) 1 ( 0 kt - × l = l , where k , 0 l are reference and temperature coefficients for the thermal conductivity. Then, applying expressions (3), (13), the formula to determine the temperature t in areas is obtained ( ) { } l y h x y x £ £ = W , : , 0 , 0 1 0 0 0 2 1 1 k k t ÷ ÷ ø ö ç ç è æ J + l J - - = * , ( ) { } 1 2 1 , : , d l y d l h x y x + £ £ - - > = W , ( ) { } l y d l h x y x - < £ - - £ = W 2 2 , : , , 1 0 1 1 2 1 1 k k t l J × - - = , ( ) { } 1 3 , : , d l y l h x y x + £ < £ = W , 1 1 0 1 1 2 1 1 k k t ÷ ÷ ø ö ç ç è æ J + l J - - = * , where ; 2 1 1 2 1 1 2 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 * 1 l y h x l y h x t t k k t t k k t t k k - = = - = = ï þ ï ý ü × ï î ï í ì ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ × l l - + - l l + + ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ - × l l + l l - + + ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ - × l l + l l - = J ; 2 1 1 ; 2 1 1 1 0 1 1 1 0 1 1 k k t k k t l y l y h x h x l J × - - = l J × - - = - = - = = = ; 2 1 1 1 0 1 1 k k t l y h x l y h x l J × - - = ± = = ± = = 0 3 0 0 0 2 1 1 k k t l y l y ÷ ÷ ø ö ç ç è æ J + l J - - = * = = ; y d 1 l2 d 2 2h O x Fig. Thermosensitive strip with rectangular inclusion. . 2 1 1 2 1 1 2 1 1 ; 2 1 1 2 1 1 2 1 1 2 1 1 | | 0 0 0 1 1 0 0 0 0 1 | | 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 * 3 | | 1 0 1 0 0 0 0 1 0 0 | | 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 * 2 l z h x l z h x l z l z h x l z h x l z l z t t k k t t k k t t k k t t k k t t k k t t k k t t k k - = = = = - = - = = = = = - = ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ l l × - + - l l + + ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ - l l × + l l - + + ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ - l l × + l l - = J ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ - l l × + l l - + + ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ l l × - + - l l + + ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ - l l × + l l - + + ï þ ï ý ü ï î ï í ì × ú ú û ù ê ê ë é × ÷ ÷ ø ö ç ç è æ l l × - + - l l = J Being based on numerical analysis, it has been determined that it is enough to select the partition number n of the intervals ] [ l l ; - , ] [ 0 ; h - and ] [ h ; 0 that equals seven and the partition number m of the interval ] [ * ; 0 x that equals eleven. Numerical calculations have been performed for the following materials: strip material – ceramics VK-94-1, the inclusion material – tungsten, which show that the consideration of dependency of the thermal conductivity coefficients on temperature leads to reduction of the temperature field compared with non-thermosensitive system (thermal-and-physical parameters are independent on temperature) by 3.8% for selected materials. 7. Conclusions The original nonlinear heat conductivity equation (1) has been partially linearized using the relation (3) that describes a new input function  J . The proposed piecewise linear approximation of temperature on the boundaries ± x L , ± y L of an inclusion and at the edges ± K of the strip with the expressions (7) that allowed to totally linearize the nonlinear boundary problem of thermal conductivity (5), (6) for a thermosensitive system with the foreign inclusion. An analytical solution to the input function J has been produced as a formula (3), which enabled to construct new algorithms and developed software to evaluate the temperature gradients in the area of foreign inclusion and to forecast the operation mode of electronic devices with increased thermal resistance and prolonged operating period. References 1. Yu.M. Kolyano, Yu.M. Krychevets, E.H. Ivanyk, V.I. Gavrysh, Temperature field in half-space with foreign inclusion // Inzhenerno-fizich. zhurnal (Minsk) 55 (6), p. 1006-1011 (1988) (in Russian). 2. V.I. Gavrysh, V.A. Volos, The problem of the strip with rectangular inclusions heat conductivity // The Lviv Polytechnic State University Bulletin: Applied Mathematics. No. 320, p. 28-33 (1997) (in Ukrainian). 3. Ya.M. Podstryhach, V.A. Lomakin, Yu.M. Kolya​no, Thermoelasticity of Heterogeneous Body Structure. Nauka. Moscow, 1984 (in Russian). 4. Yu.M. Kolyano, Methods of Heat Conductivity and Thermoelasticity of Heterogeneous Bodies. Naukova Dumka, Kyiv (1992) (in Russian). 5. D. Fedasyuk, V. Gavrysh, A. Kuzmin, Non-linear heat exchange problem for the piecewise homo​geneous strip with foreign inclusion // Proc. Intern. Conference “Modern Problems of Mechanics and Mathematics”, vol. 1, Lviv, 2008 (in Ukrainian). 6. V.A. Lomakin, The Theory of Thermoelasticity of Heterogeneous Bodies. Moscow University Publishing House, Moscow, 1976 (in Russian). 7. R. Berman, Heat Conductivity of Solids. Mir, Moscow, 1979 (in Russian). © 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 440 _1338974804.unknown _1362828764.unknown _1362833010.unknown _1362834020.unknown _1364394170.unknown _1364394171.unknown _1364394022.unknown _1364394023.unknown _1362834063.unknown _1364394021.unknown _1362833225.unknown _1362833229.unknown _1362833013.unknown _1362831713.unknown _1362831852.unknown _1362832353.unknown _1362832958.unknown _1362832464.unknown _1362832196.unknown _1362832251.unknown _1362832314.unknown _1362832205.unknown _1362832139.unknown _1362831774.unknown _1362831797.unknown _1362831763.unknown _1362831464.unknown _1362831516.unknown _1362828767.unknown _1338976093.unknown _1338984783.unknown _1338985326.unknown _1338985546.unknown _1338986034.unknown _1338986306.unknown _1338986357.unknown _1338986058.unknown _1338985558.unknown _1338985569.unknown _1338985573.unknown _1338985566.unknown _1338985549.unknown _1338985506.unknown _1338985543.unknown _1338985427.unknown _1338985058.unknown _1338985079.unknown _1338984882.unknown _1338981028.unknown _1338981081.unknown _1338984758.unknown _1338981060.unknown _1338978517.unknown _1338981024.unknown _1338976097.unknown _1338975203.unknown _1338975355.unknown _1338975373.unknown _1338975272.unknown _1338975146.unknown _1338975184.unknown _1338975102.unknown _1338386764.unknown _1338819899.unknown _1338820113.unknown _1338974746.unknown _1338820202.unknown _1338819952.unknown _1338819737.unknown _1338819869.unknown _1338387054.unknown _1338387256.unknown _1338816877.unknown _1338387251.unknown _1338387011.unknown _1338387049.unknown _1338386717.unknown _1338386736.unknown _1338386743.unknown _1338386746.unknown _1338386740.unknown _1338386731.unknown _1338025676.unknown _1338386604.unknown _1338386696.unknown _1338025822.unknown _1338386540.unknown _1338025776.unknown _1338025357.unknown _1338025665.unknown _1330946344.unknown