The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy
The elastic Green function and resolution function in Piezoresponse Force Microscopy (PFM) of thin piezoelectric film capped on the rigid substrate are derived. The extrinsic size effect on the resolution function is demonstrated.
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2008
|
Назва видання: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/118851 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy / A.N. Morozovska // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2008. — Т. 11, № 2. — С. 171-177. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-118851 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1188512017-06-01T03:03:06Z The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy Morozovska, A.N. The elastic Green function and resolution function in Piezoresponse Force Microscopy (PFM) of thin piezoelectric film capped on the rigid substrate are derived. The extrinsic size effect on the resolution function is demonstrated. 2008 Article The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy / A.N. Morozovska // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2008. — Т. 11, № 2. — С. 171-177. — Бібліогр.: 11 назв. — англ. 1560-8034 PACS 77.80.Fm, 77.65.-j, 68.37.-d http://dspace.nbuv.gov.ua/handle/123456789/118851 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The elastic Green function and resolution function in Piezoresponse Force
Microscopy (PFM) of thin piezoelectric film capped on the rigid substrate are derived.
The extrinsic size effect on the resolution function is demonstrated. |
format |
Article |
author |
Morozovska, A.N. |
spellingShingle |
Morozovska, A.N. The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy Semiconductor Physics Quantum Electronics & Optoelectronics |
author_facet |
Morozovska, A.N. |
author_sort |
Morozovska, A.N. |
title |
The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy |
title_short |
The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy |
title_full |
The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy |
title_fullStr |
The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy |
title_full_unstemmed |
The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy |
title_sort |
resolution function and effective response of piezoelectric thin films in piezoresponse force microscopy |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/118851 |
citation_txt |
The resolution function and effective response of piezoelectric thin films in Piezoresponse Force Microscopy / A.N. Morozovska // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2008. — Т. 11, № 2. — С. 171-177. — Бібліогр.: 11 назв. — англ. |
series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
work_keys_str_mv |
AT morozovskaan theresolutionfunctionandeffectiveresponseofpiezoelectricthinfilmsinpiezoresponseforcemicroscopy AT morozovskaan resolutionfunctionandeffectiveresponseofpiezoelectricthinfilmsinpiezoresponseforcemicroscopy |
first_indexed |
2025-07-08T14:46:50Z |
last_indexed |
2025-07-08T14:46:50Z |
_version_ |
1837090486645424128 |
fulltext |
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 171-177.
.
© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
171
PACS 77.80.Fm, 77.65.-j, 68.37.-d
The resolution function and effective response
of piezoelectric thin films in Piezoresponse Force Microscopy
A.N. Morozovska
V. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine,
45, prospect Nauky, 03028 Kyiv, Ukraine; e-mail: morozo@i.com.ua
Abstract. The elastic Green function and resolution function in Piezoresponse Force
Microscopy (PFM) of thin piezoelectric film capped on the rigid substrate are derived.
The extrinsic size effect on the resolution function is demonstrated.
Keywords: Piezoresponse Force Microscopy, thin piezoelectric films, resolution
function.
Manuscript received 28.09.07; accepted for publication 10.04.08; published online 30.07.08.
1. Introduction
Verification of existing theoretical models, design of
functional nanomaterials with predetermined properties,
and application in various devices necessitate
experimental and theoretical studies of piezoelectric
coupling and ferroelectric properties in surface layers.
These considerations of the local polarization switching
behavior in thin films are possible in the context of
Piezoresponse Force Microscopy (PFM) [1, 2].
Conventional framework for the PFM data analysis
was based on the 1D models suggested originally by
Ganpule, thus ignoring the 3D geometry of the PFM
problem. Only recently, the decoupled theory [3, 4] was
applied to derive analytical expressions for PFM
response on semi-infinite materials of low symmetry,
derive analytical expressions for resolution function and
domain wall profiles, and interpret PFM spectroscopy
data [5].
Further, the local piezoresponse dependence on
film thickness was predicted in [6] for thin films capped
on the nonpiezoelectric bulk with the same elastic and
close dielectric properties. In the paper, the com-
plementary case of thin piezoelectric films capped on
rigid substrates is considered within the framework of
decoupled approximation. For ferroelectric perovskite
films like BaTiO3 or Pb(Ti, Zr)O3 rigid dielectric
substrates are MgO oxide, sapphire Al2O3 or carbon with
effective dielectric constant 105 −≈κb . Silicon
( 123 −≈κb ) and SiO2 ( 5≈κb ) have smaller elastic
stiffness than typical perovskites.
2. Elastic Green function of thin film on rigid
substrate
Let us derive the elastic Green function for the layer on
the rigid substrate. General equation for the field of
elastic displacement vector is [7]:
.)()1(2
)div(grad
21
1
ξ−δ⋅
ν+
−=
=
ν−
+∆
x
uu xxx
F
Y
(1a)
Here the vector x denotes the given location and
ξ is the point at which the point force, F , is applied.
The material is isotropic and ν is the Poisson coeffi-
cient, Y is the Young modulus. Introducing the shear
modulus ( )( )ν+=µ 12Y , Eq. (1a) can be rewritten as:
)(
21
1 22
ξ−δ
µ
−=
∂∂
∂
ν−
+
∂∂
∂ xi
mi
m
kk
i F
xx
u
xx
u . (1b)
Introducing transversal Fourier transformation
( ) ,)(exp
2
1
),,(~
221121
321
∫∫
∞
∞−
∞
∞−
⋅+
π
=
=
xi
i
uxikxikdxdx
xkku
(2a)
( ) ),,,(~exp
2
1)( 321221121 xkkuxikxikdkdku ii ∫∫
∞
∞−
∞
∞−
−−
π
=x
(2b)
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 171-177.
.
© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
172
and using integral representation of the delta function
( )
( ) ( )( ) .exp
2
1
)()(
222111212
2211
ξ−−ξ−−
π
=
=ξ−δξ−δ
∫ ∫
∞
∞−
∞
∞−
xikxikdkdk
xx
(3)
Eq. (1b) yields:
( )( )
( )
( )( )
( )
( ) ( )
( )⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎧
−δξ+ξ
πµ
−
=
∂
∂
α+++−
∂
∂
α−
∂
∂
α−
−δξ+ξ
πµ
−
=
∂
∂
α−
∂
∂
+α++−α−
−δξ+ξ
πµ
−
=
∂
∂
α−α−
∂
∂
++α+−
)(exp
2
~
1~
~~
)(exp
2
~~
~1~
)(exp
2
~
~
~
~1
332211
3
2
3
3
2
3
2
2
2
1
3
2
2
3
1
1
332211
2
3
3
22
3
2
2
2
2
2
2
1121
332211
1
3
3
12212
3
1
2
1
2
2
2
1
ξxikik
F
x
u
ukk
x
u
ki
x
u
ki
ξxikik
F
x
u
ki
x
u
ukkukk
ξxikik
F
x
u
kiukk
x
u
ukk
(4)
where ( )ν−=α 211 is introduced.
The solution of Eq. (4) is )exp(~~
3xsui , where s
values should be determined. Substitution into Eq. (4)
with 0=iF (homogeneous system) yields the
characteristic equation for s:
( ) ( ) 01322
2
2
1 =α+−+− skk . (5)
Eq. (5) has thrice degenerated roots ks ±= , where
2
2
2
1 kkk += is the module of the vector k. After the
simple, but cumbersome transformations one can find
the general homogeneous solution of Eq. (4) as
( )
( ) ,)exp(
)exp(),,(~
3333111
33131103211
xkCxkiC
xkCxkiCxkku h
++
+−+=
, (6)
( )
( ) ,)exp(
)exp(),,(~
3333221
33132203212
xkCxkiC
xkCxkiCxkku h
++
+−+=
(7)
( )
( ) ).exp(43
)exp(
43
),,(~
33333321
2
11
1
3
3133120
2
10
1
3213
xkCxkCC
k
k
iC
k
k
i
xk
CxkCC
k
k
iC
k
k
i
xkku h
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−ν−+++
+−×
×⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+ν−+−−=
=
(8)
Note, that the equality ν−=α+ 4321 was used in
Eqs. (6)-(8).
To complement the general solution, we seek the
particular solution )(xp
iu of the inhomogeneous
Eqs. (4). One of the simplest is the solution for the
homogeneous space )(x∞
iu , since Eq. (1) is reduced to
the system of algebraic equations when using the full
3D-Fourier transformation. Its solution has the form:
( ) ( ) ( )
( )
( ) ( ) .
12
1
2
1ˆ
,expˆˆ
422/3 ⎟⎟
⎟
⎠
⎞
⎜⎜
⎜
⎝
⎛
ν−
−
δ
µπ
=
=
∞
∞∞
kk
k
kξkk
jiij
ij
jiji
kk
G
iFGu
(9)
The inhomogeneous solution (9) corresponds to the
well-known Fourier image of Green’s tensor for infinite
homogeneous isotropic media (see e.g. Ref. [8]).
Looking for solution of the system, confined in 3x -
direction, it is convenient to transform (9) to coordinate
representation on 3x . Simple integration gives:
( )
( ) ( ),exp,,~
,,~
22113321
321
ξ+ξξ−=
=
∞
∞
ikikFxkkG
xkku
jij
i (10)
where
( )
( ) ( )
( ) ,
14
1
1
exp
4
1
,,~
2
33
2
133
332111
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−
ξ−+
−
ξ−−
πµ
=
=ξ−∞
k
xkk
k
xk
xkkG
(11a)
( )
( ) ( )
( ) ,
14
1exp
4
1
,,~
2
332133
332112
k
xkkk
k
xk
xkkG
ν−
ξ−+ξ−−
πµ
−=
=ξ−∞
(11b)
( )
( ) ( )
( ) ,
14
1
1
exp
4
1
,,~
2
33
2
233
332122
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−
ξ−+
−
ξ−−
πµ
=
=ξ−∞
k
xkk
k
xk
xkkG
(11c)
( )
( ) ( )
( ) ,
14
exp
4
1
,,~
33133
332113
ν−
ξ−ξ−−
πµ
=
=ξ−∞
xki
k
xk
xkkG
(11d)
( )
( ) ( )
( ) ,
14
exp
4
1
,,~
33233
332123
ν−
ξ−ξ−−
πµ
=
=ξ−∞
xki
k
xk
xkkG
(11e)
( )
( )
( ) ,
14
1
1
exp
4
1
,,~
3333
332133
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−
ξ−−
−
ξ−−
πµ
=
=ξ−∞
xk
k
xk
xkkG
(11f)
and ( )( )ν+=µ 12Y .
The general solution of the chosen elastic
problem should satisfy the boundary conditions at the
rigid substrate is 0)( 3 == hxui or )( 3 hxui = and
)( 33 hxi =σ are continuous for the matched substrate;
also 0)0( 33 ==σ xi at free upper surface. Keeping in
mind the Hook law klijklij uc=σ , where the strain
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 171-177.
.
© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
173
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
+
∂
∂
=
k
l
l
k
kl x
u
x
u
u
2
1 and elastic stiffness =ijklc
⎟
⎠
⎞
⎜
⎝
⎛ δδ+δδ+δδ
ν−
ν
ν+
= jkiljlikklij
Y
21
2
)1(2
, one obtains
that: ( ) ( )( )22113333 )1(
21)1(
uuuY
+ν+ν−
ν−ν+
=σ ,
1331 )1(
uY
ν+
=σ , 2332 )1(
uY
ν+
=σ .
For the rigid substrate case, the boundary
conditions for ( ) ( )+= 321321 ,,~,,~ xkkuxkku h
ii
( )321 ,,~ xkku p
i+ have the form:
( )
⎪
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎪
⎨
⎧
===
=−
∂
∂
=−
∂
∂
=+ν−
∂
∂
ν−
===
==
=
.0~,0~,0~
,0~
~
,0~
~
,0~~
~
)1(
333
33
3
321
0
32
3
2
0
31
3
1
0
2211
3
3
hxhxhx
xx
x
uuu
uik
x
u
uik
x
u
ukuki
x
u
(12)
Six constants Cij should be expressed via Fj from
Eqs. (12). For the matched substrate only the first row of
Eqs. (12) should be used.
(I) First step. Let us find the Green function
( )3321 ,,~
ξ−xkkG s
ij of the semi-space ( ∞→h ). The
function is the solution for the matched substrate case.
For the case 0332111 === CCC and then Eqs. (12)
should be solved allowing for the partial solution
)0,,(~)0,,(~
2121 kkukku i
p
i
∞≡ . After cumbersome
algebraic transformations one derives:
( )
( ) ( ) .exp,,,~
,,~
22113321
321
ξ+ξξ=
=
ikikFxkkG
xkku
j
s
ij
s
i (13)
Where
( ) ( )( )
( )
( ) ( )
( ) ( )( )
( )
( )
( )( ) ,14
116
exp
181222
43
116
exp
,,,~
33
2
1
2
1
2
3
33
2
133
2
1
2
33
2
1
3
33
332111
ξ−−−ν−
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
νν−−+ξ+ν−+
+ν−ξ+−
×
×
ν−πµ
ξ+−
=ξ
xkkkk
k
xk
kxkk
xkk
k
xk
xkkG s
(14a)
( ) ( )( )
( )
( ) ( )
( )
( )
( )
( ),1
116
exp
181
432
116
exp
,,,~
33213
33
3333
2
21
3
33
332121
ξ−+
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
νν−−+
+ν−ξ+−ξ
×
×
ν−πµ
ξ+−
=ξ
xkkk
k
xk
xkxkkk
k
xk
xkkG s
(14b)
( ) ( )( )
( )
( )( )
( )( )
( )
( ) ( ) ,
116
exp
2114
432
116
exp
,,,~
331
33
3333
2
12
33
332131
ξ−
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−ν−+
+ν−ξ−+ξ−
×
×
ν−πµ
ξ+−
=ξ
xik
k
xk
xkxk
ik
k
xk
xkkG s
(14c)
( ) ( )( )
( )
( )( )
( )
( )
( )
( ) ,1
116
exp
181
432
116
exp
,,,~
33213
33
3333
2
21
3
33
332112
ξ−+
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
νν−−+
+ν−ξ+−ξ
×
ν−πµ
ξ+−
=ξ
xkkk
k
xk
xkxk
kk
k
xk
xkkG s
(14d)
( ) ( )( )
( )
( )( )
( ) ( )( )
( )
( )
( )( ),14
116
exp
181222
43
116
exp
,,,~
33
2
2
2
2
2
3
33
2
233
2
2
2
33
2
2
3
33
332122
ξ−−−ν−
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
νν−−+ξ+ν−+
+ν−ξ+−
×
×
ν−πµ
ξ+−
=ξ
xkkkk
k
xk
kxkk
xkk
k
xk
xkkG s
(14e)
( ) ( )( )
( )
( ) ( )
( ) ( )
( )
( ) ( ) ,
116
exp
2114
432
116
exp
,,,~
332
33
3333
2
2
2
33
332132
ξ−
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−ν−+
+ν−ξ−+ξ−
×
×
ν−πµ
ξ+−
=ξ
xik
k
xk
xkxkik
k
xk
xkkG s
(14f)
( ) ( )( )
( )
( ) ( )
( ) ( )
( )
( ) ( ) ,
116
exp
2114
432
116
exp
,,,~
331
33
3333
2
1
2
33
332113
ξ−
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−ν−−
+ν−ξ−+ξ
×
×
ν−πµ
ξ+−
=ξ
xik
k
xk
xkxk
ik
k
xk
xkkG s
(14g)
( ) ( )( )
( )
( ) ( )
( ) ( )
( )
( ) ( ) ,
116
exp
2114
432
116
exp
,,,~
332
33
3333
2
2
2
33
332123
ξ−
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−ν−−
−ν−ξ−+ξ
×
×
ν−πµ
ξ+−
=ξ
xik
k
xk
xkxk
ik
k
xk
xkkG s
(14h)
( ) ( )( )
( )
( ) ( )
( )( )
( )
( )
( ).43
116
exp
21141
432
116
exp
,,,~
33
33
3333
2
33
332133
ξ−+ν−
ν−πµ
ξ−−
+
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ν−ν−++
+ν−ξ++ξ
×
×
ν−πµ
ξ+−
=ξ
xk
k
xk
xkxk
k
xk
xkkG s
(14i)
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 171-177.
.
© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
174
where 2
2
2
1 kkk += . Note that
( )=ξ332121 ,,,~ xkkG s ( )332112 ,,,~
ξxkkG s ,
( ) =ξ332122 ,,,~ xkkG s ( )331211 ,,,~
ξxkkG s ,
( ) =ξ332132 ,,,~ xkkG s ( )331231 ,,,~
ξxkkG s as expected.
(II) Second step. Using Eq. (14) as the partial
solution ( ) ( )321321 ,,~,,~ xkkuxkku s
i
p
i = , let us find the
surface vertical displacement =)0,,(~
213 kku f
)0,,(~)0,,(~
213213 kkukku sh + for the film of the thickness
h. Here )0,,(~
213 kku h should be found from Eqs. (12),
namely after cumbersome algebraic transformations we
derived that
( ) ( ) ( )22113213213 exp,,~0,,~ ξ+ξξ= ikikFkkGkku j
f
j
f . (15)
Where the elastic Green function ( )3213 ,,~
ξkkG f
j
for the film on a rigid substrate has the form:
( )
( ) ( ) ( )
( ) ( )( ) ( )
,
,,,,~,,,~
,,,,~,0,,~
,,~
3212232111
332133213
3213
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
νφξ+ξ+
+νφξ−ξ
=
=ξ
⊥ hkhkkGkhkkGki
hkhkkGkkG
kkG
s
j
s
j
s
j
s
j
f
j
(16)
( )
( ) ( ) ( )( )
( )( ) ( )( )( ) ,2211412)2exp()2exp(43
22)exp(22)exp(14
,
22
3
hkhkhk
hkhkhkhk
hk
+ν−ν−+++−ν−
+ν−+−ν−−ν−
=
=νφ
(17a)
( )
( ) ( ) ( )( )
( )( ) ( )( )( )( ).2211412)2exp()2exp(43
21)exp(21)exp(14
,
22hkhkhkk
hkhkhkhk
hk
+ν−ν−+++−ν−
−ν−−+ν−−ν−
=
=νφ⊥
(17b)
Here 2
2
2
1 kkk +≡ , ν is the Poisson ratio. Note
that ( ) 00,,~
3213 =<ξ< hkkG f
j at 0=h as it should be
expected. For the film on the matched substrate
( ) 0,3 =νφ hk and ( ) 0, =νφ⊥ hk .
3. Resolution function and electric field calculations
for thin piezoelectric films
The phenomenological resolution function theory for
PFM based on linear imaging theory has been introduced
in Ref. [9], where the resolution function and the effect
of lock-in on resolution have been determined
experimentally, and later on theoretically considered in
Ref. [5] for the semi-infinite case.
Let us consider the case when the film dielectric
and piezoelectric properties differ from bulk or substrate
ones. In this case, the strain piezoelectric coefficient
( )321 ,, xxxdklj is dependent on the depth 3x as follows:
( ) ( )
⎪⎩
⎪
⎨
⎧
∞<<
≤≤
=
3
321
321
,0
0,,
,,
xh
hxxxd
xxxd
S
ijk
klj (18)
Here, ( )21, xxd S
ijk are the film piezoelectric effect
tensor components.
The surface piezoresponse below the tip ( 03 =x )
is given by the convolution of piezoelectric coefficients
kljd with the surface and bulk components of the
resolution function [9]:
( )
( ) ( ) .,,
0,,
22112121
21
ξ−ξ−ξξξξ=
=
∫∫
∞
∞−
∞
∞−
xxdWdd
xxu
S
lkj
f
ijkl
S
i
(19)
The film resolution function [6] components f
ijklW
are introduced as
( )
( ) ( ) .,,
,,
,
0
321
321
3
21
∫ ξξξ
ξ∂
ξξ−ξ−∂
ξ=
=ξξ
h
l
n
f
im
kjmn
f
ijkl
E
G
cd
W
(20)
( )xkE is the ac electric field distribution produced
by the probe.
Hereinafter the effective point charge model
[10, 11] is used for electric fields description in the
immediate vicinity of the tip-surface junction. Within the
framework of the model, the charge value Q and its
surface separation d are selected so that corresponding
isopotential surface reproduces the tip radius of
curvature in the contact point 0R (or contact radius for
flattened tip) and potential U (see Fig. 1). For
piezoresponse modeling, the electric field structure can
be represented by the point charge model in which the
effective charge value Q is equal to the product of tip
capacitance )(hCt on applied voltage ( ) UhChQ t )(= .
The electric field potentials ( )rbie ,,ϕ created by the
point charge Q localized in ambient in the point
),0,0(0 dr −= outside the layer (film) hx ≤≤ 30 filled
by transversely isotropic dielectric with 332211 ε≠ε=ε
could be found from the boundary problem:
x3
PFM probe
x2
εij
Q
d
x1
dijk (x1,x2)
εb
ij
Fig. 1. Point charge model of the PFM probe and scheme of
measurements.
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 171-177.
.
© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
175
( )
( )
( )
.0),()(
,0),0()0(
,,0
,0,0
,0),,,(
3
3
3
33
3
3333
03
33
3
33
32
3
2
3311
32
3
2
3311
3321
0
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
ϕ∂
ε−
∂
ϕ∂
ε=ϕ==ϕ
=⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
ϕ∂
ε−
∂
ϕ∂
ε=ϕ==ϕ
≥=
∂
ϕ∂
ε+ϕ∆ε
≤≤=
∂
ϕ∂
ε+ϕ∆ε
≤+δ
εε
−=ϕ∆
=
=
⊥
⊥
hx
ibb
bi
x
ie
eie
bb
b
b
i
i
e
e
xx
hxhx
xx
xx
hx
x
hx
x
xdxxxQ
r
r
r
(21)
Note, that 0)( 3 ==ϕ hxi for a conductive
substrate. The solution of Eq. (21) can be found with the
help of Hankel integral transformation. Inside the film
hx ≤≤ 30 , the Fourier representation of the electric field
( )321 ,,~ xkkE j acquires the form
( )
( ) ( )
( )( ) ( )( )
( )
( ) ( )
( )( ) ( )( )
.
2exp
2
expexp
2
,,~
,
2exp
2
expexp
2
,,~
33
0
3213
33
0
2,13212,1
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
γ
−κ−εκ−κ−κ+εκ+κγ
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
γ
−
−−κ−κ+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
γ
−−κ+κ
×
×
πε
=
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
γ
−κ−εκ−κ−κ+εκ+κ
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
γ
−
−−κ−κ−⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
γ
−−κ+κ
×
×
πε
=
kh
xh
kkd
x
kkd
QxkkE
khk
xh
kkd
x
kkd
QikxkkE
ebeb
bb
ebeb
bb
(22)
Here eε is the dielectric constant of the ambient,
1133εε=κ is effective dielectric constant,
1133 εε=γ is the dielectric anisotropy factor of the
film, bb
b 1133εε=κ is effective dielectric constant of the
substrate; d− is x3-coordinate of the effective point
charge Q . Usually 1001~ −d nm.
For the conductive disk of radius 0R representing
flattened tip-surface contact area, the effective charge
( ) UhChQ t )(disk= . Calculations performed in Ref. [6]
lead to the probe tip effective capacity
( ) ( )dhRhC et ,4)( 00
disk ψκ+εε≈ , where the function
1
0 )1(22
),(
−∞
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
++γ
γ
κ+κ
κ−κ
−
+γ
γ
χ=ψ ∑ nhd
d
hnd
ddh
b
b
n
n
and the parameter ⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
κ+ε
κ−ε
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
κ+κ
κ−κ
=χ
e
e
b
b . The corres-
ponding effective distance π= 02Rd , i.e. d is almost
independent on the film thickness h.
For the spherical tip with curvature 0R in point
contact with film surface, the effective charge
( ) UhChQ t )(sph= . We obtained the probe tip capacity
( )
( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
ε
κ+ε
κ−ε
χ−κεγ
+×
×⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
ε
κ+ε
ε−κ
ε+κ
επε≈
e
e
e
e
e
e
e
e
et
h
R
RhC
2
ln1ln21
2
ln4)(
2
0
00
sph
and effective distance ×ε≈ 02 Rd e
( )( ) ( )eee ε−κεκ+ε× 2ln for the film thickness
01.0 Rh γ≥ in the actual range of high dielectric
constants 1, >>κκb and 801 ≤ε≤ e [6].
For the case when the considered surface
piezoelectric layer is inhomogeneous in the transverse
directions { }21,xx (e.g. it is divided into polar regions or
posses domain structure with different piezoelectric
tensor values and signs ( )21,xxd S
ijk ), the resolution
function components f
ijkW allow approximate
calculation of the piezoresponse from those structures,
which Fourier image ( )qS
ijkd
~
exists in usual (e.g. domain
stripes, rings etc.) or generalized (infinite plane domain
wall) sense. Being more rigorous, one should use the
Fourier image of tensorial object transfer function
components )(~ qW f
ijk , since the Fourier transform of film
vertical piezoresponse ( )qeff
33
~
d over transverse coor-
dinates { }21, xx is
( ) ( ) ( ) ( )qqqq SfSfSf dWdWdWd 153513131333333
eff
33
~~~~~~~
++= , (23)
where ( ) ( ) xxq qxdedd i∫= eff
33
eff
33
~
is the Fourier
transforms of effective vertical piezoresponse
Uud )0(3
eff
33 == x ; the Voight notation is used. Object
transfer function component ( )qW f
ij3
~ spectrum
dependent on wavenumber absolute value 2
2
2
1 qqq +=
is shown in Fig. 2a-c for various film thicknesses h.
In most cases, the component ( )qW f
333
~
corresponding to the piezoelectric constant 33d provides
the dominant (>50 %) contribution to the overall signal
[5]. The two-point resolution rmin in PFM experiments is
determined by the inverse halfwidth of ( )qW f
333
~ . The
dependence of corresponding two-point resolution rmin
on h/d for different values of anisotropy γ is shown in
Fig. 2d. It is clear that the information limit increases
with the film thickness decrease because of rmin
decrease. The dependence of 180º-periodic domain
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 171-177.
.
© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
176
10 -2 0.1 1 10 10 2
10 -2
0.1
1
4
3
2
1
Thickness h/d
Tw
o-
po
in
t r
es
ol
ut
io
n
Anisotropy γ
increase
0.1 1 10
0.1
1
1
4
3
2
Thickness h
decrease
W
f 33
3(
q)
Wave number qd
~
(a) (d)
W
f 35
1(
q)
~
0.1 1 10 102
10 -2
0.1
1
W
f 31
3(
q)
~
1
4
3
2
Thickness h
decrease
(b) (c)
Wave number qd
0.1 1 10 10 2
10-4
10-2
1
1
4
3
2
Thickness h
decrease
Wave number qd
Fig. 2. (a, b, c) Object transfer function components ( )qW f
ij3
~ spectrum for anisotropy γ = 1, permittivity 500=κ and relative thick-
ness =dh 0.3, 1, 3, 10 (curves 1, 2, 3, 4); substrate permittivity 10=κb , ambient dielectric constant 1=εe . (d) The dependence of
corresponding two-point resolution drmin on dh for different values of anisotropy γ = 0.25, 0.5, 1, 3 (curves 1, 2, 3, 4).
0 5 10
0
5
10
Film thickness h (nm)
D
om
ai
n
st
rip
es
p
er
io
d
a
(
nm
)
R0=9 nm
R0=6 nm
R0=3 nm
1 10 102 103 104
0.1
1
10
R
es
ol
ut
io
n
a
m
in
(n
m
)
180o-domains stripes
Film thickness h (nm)
(a) (b)
amin
+Pz
-Pz -Pz
+Pz +Pz
y
x
Fig. 3. (a) The dependence of 180o-periodic domain structure resolution mina via PbTiO3 film thickness h on a rigid substrate for
the effective distance d = 10 nm. (b) Information limit defined as a minimal domain stripes period a calculated from the condition
( ){ }had ,max eff
33 = noise level for the PbTiO3 film of the thickness h on a rigid substrate for the typical noise level 1 pm/V and
different tip-surface contact radii R0 = 3, 6, 9 nm (effective distance π= 02Rd ). (b) PbTiO3 material parameters ν = 0.35,
κ = 121, γ = 0.87, =Sd33 117, =Sd15 61, =Sd31 –25 pm/V, substrate permittivity 5=κb , ambient permittivity 1=εe .
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 2. P. 171-177.
.
© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
177
structure resolution via the film thickness h and
corresponding information limit defined as minimal
domain stripes period mina calculated from the
condition ( ){ }had ,max eff
33 = noise level is shown in
Fig. 3 for the PbTiO3 film on a rigid substrate.
4. Conclusion
The elastic Green function and resolution function in
Piezoresponse Force Microscopy (PFM) of piezoelectric
film capped on the rigid substrate with different
dielectric properties are derived.
The thickness dependence of resolution function of
the thin piezoelectric films on rigid substrates is
demonstrated: minimal lateral resolution (or higher
information limit) is possible in thin films. However, the
signal amplitude essentially decreases with film
thickness decrease, eventually making the noise level
relatively higher.
Acknowledgements
Author is grateful to Academician, Prof.
S.V. Svechnikov (NAS of Ukraine) and Dr. S.V. Kalinin
(Oak Ridge National Laboratory) for valuable remarks.
References
1. Nanoscale Characterization of Ferroelectric
Materials, ed. M. Alexe and A. Gruverman.
Springer, 2004.
2. Nanoscale Phenomena in Ferroelectric Thin Films,
ed. Seungbum Hong. Kluwer, 2004.
3. F. Felten, G.A. Schneider, J.M. Saldaña, and
S.V. Kalinin // J. Appl. Phys. 96, p. 563 (2004).
4. D.A. Scrymgeour and V. Gopalan // Phys. Rev. B
72, 024103 (2005).
5. A.N. Morozovska, E.A. Eliseev, S.L. Bravina, and
S.V. Kalinin // Phys. Rev. B 75, 174109-1-18 (2007).
6. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev,
and S.V. Kalinin, Extrinsic size effect in
Piezoresponse Force Microscopy of thin films //
Phys. Rev. B 76(5), 054123-5 (2007).
7. L.D. Landau and E.M. Lifshitz, Theory of
Elasticity. Theoretical Physics, Vol. 7. Butterworth-
Heinemann, Oxford, U.K., 1998.
8. C. Teodosiu, Elastic Models of Crystal Defects.
Springer-Verlag, Berlin, 1982.
9. S.V. Kalinin, S. Jesse, J. Shin, A.P. Baddorf,
H.N. Lee, A. Borisevich, and S.J. Pennycook //
Nanotechnology 17, p. 3400 (2006).
10. A.N. Morozovska, E.A. Eliseev, and S.V. Kalinin //
Appl. Phys. Lett. 89, 192901 (2006).
11. A.N. Morozovska, S.V. Kalinin, E.A. Eliseev, and
S.V. Svechnikov, Local polarization switching in
Piezoresponse Force Microscopy // Ferroelectrics
354, p. 198-207 (2007).
|