Density-functional calculations for Ce, Th, and Pu metals and alloys

The phase diagrams of Ce, Th, and Pu metals have been studied by means of density-functional theory (DFT). In addition to these metals, the phase stability of Ce-Th and Pu-Am alloys has been also investigated from firstprinciples calculations. Equation-of-state (EOS) for Ce, Th, and the Ce-Th al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Landa, A., Soderlind, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2004
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/118955
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Density-functional calculations for Ce, Th, and Pu metals and alloys / A. Landa, P. Soderlind // Condensed Matter Physics. — 2004. — Т. 7, № 2(38). — С. 247–264. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The phase diagrams of Ce, Th, and Pu metals have been studied by means of density-functional theory (DFT). In addition to these metals, the phase stability of Ce-Th and Pu-Am alloys has been also investigated from firstprinciples calculations. Equation-of-state (EOS) for Ce, Th, and the Ce-Th alloys has been calculated up to 1 Mbar pressure in good comparison to experimental data. Present calculations show that the Ce-Th alloys adopt a body-centered-tetragonal (bct) structure upon hydrostatic compression which is in excellent agreement with measurements. The ambient pressure phase diagram of Pu is shown to be very poorly described by traditional DFT but rather well modelled when including magnetic interactions. In particular, the anomalous δ phase of Pu is shown to be stabilized by magnetic disorder at elevated temperatures. The Pu-Am system has also been studied in a similar fashion and it is shown that this system, for about 25% Am content, becomes antiferromagnetic below about 400 K which corroborates the recent discovery of a Curie-Weiss behavior in this system.