A modified Poisson-Boltzmann approach to homogeneous ionic solutions

The mean electrostatic potential approach to ionic solutions was initiated by the mean field work of Gouy and Chapman for inhomogeneous systems, and Debye and Huckel for bulk solutions. Any successful extension of the mean field theories requires an adequate treatment of both the exclusion volume an...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автор: Outhwaite, C.W.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2004
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119025
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A modified Poisson-Boltzmann approach to homogeneous ionic solutions / C.W. Outhwaite // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 719–733. — Бібліогр.: 53 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The mean electrostatic potential approach to ionic solutions was initiated by the mean field work of Gouy and Chapman for inhomogeneous systems, and Debye and Huckel for bulk solutions. Any successful extension of the mean field theories requires an adequate treatment of both the exclusion volume and fluctuation terms. One such development has been the modified Poisson-Boltzmann approach. Although the bulk modified PoissonBoltzmann theory was introduced 35 years ago, only a limited amount of work has been put into its development due to the successful application of liquid state theories to ionic systems. We outline here the bulk modifi ed Poisson-Boltzmann equation, comment on some of its successes, and mention some outstanding problems.