A modified Poisson-Boltzmann approach to homogeneous ionic solutions
The mean electrostatic potential approach to ionic solutions was initiated by the mean field work of Gouy and Chapman for inhomogeneous systems, and Debye and Huckel for bulk solutions. Any successful extension of the mean field theories requires an adequate treatment of both the exclusion volume an...
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2004
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119025 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A modified Poisson-Boltzmann approach to homogeneous ionic solutions / C.W. Outhwaite // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 719–733. — Бібліогр.: 53 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The mean electrostatic potential approach to ionic solutions was initiated by the mean field work of Gouy and Chapman for inhomogeneous systems, and Debye and Huckel for bulk solutions. Any successful extension of the mean field theories requires an adequate treatment of both the exclusion volume and fluctuation terms. One such development has been the modified Poisson-Boltzmann approach. Although the bulk modified PoissonBoltzmann theory was introduced 35 years ago, only a limited amount of work has been put into its development due to the successful application of liquid state theories to ionic systems. We outline here the bulk modifi ed Poisson-Boltzmann equation, comment on some of its successes, and mention some outstanding problems. |
---|