Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures

We analyze dynamical systems of general form possessing gradient (symmetric) and Hamiltonian (antisymmetric) flow parts. The relevance of such systems to self-organizing processes is discussed. Coherent structure formation and related gradient flows on matrix Grassmann type manifolds are conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
Hauptverfasser: Gafiychuk, V.V., Prykarpatsky, A.K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2004
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119026
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures / V.V. Gafiychuk, A.K. Prykarpatsky // Condensed Matter Physics. — 2004. — Т. 7, № 3(39). — С. 551–563. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We analyze dynamical systems of general form possessing gradient (symmetric) and Hamiltonian (antisymmetric) flow parts. The relevance of such systems to self-organizing processes is discussed. Coherent structure formation and related gradient flows on matrix Grassmann type manifolds are considered. The corresponding graph model associated with the partition swap neighborhood problem is studied. The criterion for emerging gradient and Hamiltonian flows is established. As an example we consider nonlinear dynamics in a neuron network system described by a simulative vector field. A simple criterion was written in order to establish conditions for the formation of an oscillatory pattern in a model neural system under consideration.