On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum

We deal with the two following classes of equilibrium stochastic dynamics of infinite particle systems in continuum: hopping particles (also called Kawasaki dynamics), i.e., a dynamics where each particle randomly hops over the space, and birth-and-death process in continuum (or Glauber dynamics),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Lytvynov, E., Polara, P.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2008
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119137
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum / E. Lytvynov, P.T. Polara // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 223-236. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We deal with the two following classes of equilibrium stochastic dynamics of infinite particle systems in continuum: hopping particles (also called Kawasaki dynamics), i.e., a dynamics where each particle randomly hops over the space, and birth-and-death process in continuum (or Glauber dynamics), i.e., a dynamics where there is no motion of particles, but rather particles die, or are born at random. We prove that a wide class of Glauber dynamics can be derived as a scaling limit of Kawasaki dynamics. More precisely, we prove the convergence of respective generators on a set of cylinder functions, in the L²-norm with respect to the invariant measure of the processes. The latter measure is supposed to be a Gibbs measure corresponding to a potential of pair interaction, in the low activity–high temperature regime. Our result generalizes that of [Random. Oper. Stoch. Equa., 2007, 15, 105], which was proved for a special Glauber (Kawasaki, respectively) dynamics.