On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum

We deal with the two following classes of equilibrium stochastic dynamics of infinite particle systems in continuum: hopping particles (also called Kawasaki dynamics), i.e., a dynamics where each particle randomly hops over the space, and birth-and-death process in continuum (or Glauber dynamics),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Lytvynov, E., Polara, P.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2008
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119137
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum / E. Lytvynov, P.T. Polara // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 223-236. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119137
record_format dspace
fulltext
spelling irk-123456789-1191372017-06-05T03:03:27Z On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum Lytvynov, E. Polara, P.T. We deal with the two following classes of equilibrium stochastic dynamics of infinite particle systems in continuum: hopping particles (also called Kawasaki dynamics), i.e., a dynamics where each particle randomly hops over the space, and birth-and-death process in continuum (or Glauber dynamics), i.e., a dynamics where there is no motion of particles, but rather particles die, or are born at random. We prove that a wide class of Glauber dynamics can be derived as a scaling limit of Kawasaki dynamics. More precisely, we prove the convergence of respective generators on a set of cylinder functions, in the L²-norm with respect to the invariant measure of the processes. The latter measure is supposed to be a Gibbs measure corresponding to a potential of pair interaction, in the low activity–high temperature regime. Our result generalizes that of [Random. Oper. Stoch. Equa., 2007, 15, 105], which was proved for a special Glauber (Kawasaki, respectively) dynamics. Ми розглядаємо такi два типи рiвноважних стохастичних динамiк нескiнченно-частинкових систем в континуумi: перестрибуючi частинки (динамiка Кавасакi), тобто динамiка, коли кожна частинка випадковим чином перескакує в просторi; динамiка типу народження-знищення (динамiка Глаубера), при якiй частинки не рухаються, а народжуються i знищуються випадковим чином. Ми доводимо, що для широкого класу динамiк Глаубера кожна така динамiка може бути одержана як скейлiнгова границя динамiки Кавасакi. Точнiше, ми доводимо збiжнiсть вiдповiдних генераторiв на множинi цилiндричних функцiй в нормi L² вiдносно вiдповiдної iнварiантної мiри процесу. Остання є мiрою Гiббса, що вiдповiдає потенцiалу парної взаємодiї в режимi мала активнiсть / високi температури. Наш результат узагальнює результат роботи [Finkelshtein D.L. et al., Random Oper. Stochastic Equations], одержаний для спецiальних типiв динамiк Глаубера i Кавасакi. 2008 Article On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum / E. Lytvynov, P.T. Polara // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 223-236. — Бібліогр.: 24 назв. — англ. 1607-324X PACS: 02.50.Ey, 02.50.Ga DOI:10.5488/CMP.11.2.223 http://dspace.nbuv.gov.ua/handle/123456789/119137 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We deal with the two following classes of equilibrium stochastic dynamics of infinite particle systems in continuum: hopping particles (also called Kawasaki dynamics), i.e., a dynamics where each particle randomly hops over the space, and birth-and-death process in continuum (or Glauber dynamics), i.e., a dynamics where there is no motion of particles, but rather particles die, or are born at random. We prove that a wide class of Glauber dynamics can be derived as a scaling limit of Kawasaki dynamics. More precisely, we prove the convergence of respective generators on a set of cylinder functions, in the L²-norm with respect to the invariant measure of the processes. The latter measure is supposed to be a Gibbs measure corresponding to a potential of pair interaction, in the low activity–high temperature regime. Our result generalizes that of [Random. Oper. Stoch. Equa., 2007, 15, 105], which was proved for a special Glauber (Kawasaki, respectively) dynamics.
format Article
author Lytvynov, E.
Polara, P.T.
spellingShingle Lytvynov, E.
Polara, P.T.
On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
Condensed Matter Physics
author_facet Lytvynov, E.
Polara, P.T.
author_sort Lytvynov, E.
title On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
title_short On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
title_full On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
title_fullStr On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
title_full_unstemmed On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
title_sort on convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
publisher Інститут фізики конденсованих систем НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/119137
citation_txt On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum / E. Lytvynov, P.T. Polara // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 223-236. — Бібліогр.: 24 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT lytvynove onconvergenceofgeneratorsofequilibriumdynamicsofhoppingparticlestogeneratorofabirthanddeathprocessincontinuum
AT polarapt onconvergenceofgeneratorsofequilibriumdynamicsofhoppingparticlestogeneratorofabirthanddeathprocessincontinuum
first_indexed 2025-07-08T15:18:19Z
last_indexed 2025-07-08T15:18:19Z
_version_ 1837092463783706624