Equilibrium stochastic dynamics of Poisson cluster ensembles
The distribution μ of a Poisson cluster process in Χ=R^d (with n-point clusters) is studied via the projection of an auxiliary Poisson measure in the space of configurations in Χ^n, with the intensity measure being the convolution of the background intensity (of cluster centres) with the probability...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2008
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119140 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Equilibrium stochastic dynamics of Poisson cluster ensembles / L. Bogachev, A. Daletskii // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 261-273. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The distribution μ of a Poisson cluster process in Χ=R^d (with n-point clusters) is studied via the projection of an auxiliary Poisson measure in the space of configurations in Χ^n, with the intensity measure being the convolution of the background intensity (of cluster centres) with the probability distribution of a generic cluster. We show that μ is quasi-invariant with respect to the group of compactly supported diffeomorphisms of Χ, and prove an integration by parts formula for μ. The corresponding equilibrium stochastic dynamics is then constructed using the method of Dirichlet forms. |
---|