Selection-mutation balance models with epistatic selection

We present an application of birth-and-death processes on configuration spaces to a generalized mutationselection balance model. The model describes the aging of population as a process of accumulation of mutations in a genotype. A rigorous treatment demands that mutations correspond to points in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Kondratiev, Yu.G., Kuna, T., Ohlerich, N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2008
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119142
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Selection-mutation balance models with epistatic selection / Yu.G. Kondratiev, T. Kuna, N. Ohlerich // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 283-291. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119142
record_format dspace
fulltext
spelling irk-123456789-1191422017-06-05T03:03:55Z Selection-mutation balance models with epistatic selection Kondratiev, Yu.G. Kuna, T. Ohlerich, N. We present an application of birth-and-death processes on configuration spaces to a generalized mutationselection balance model. The model describes the aging of population as a process of accumulation of mutations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of an epistatic potential on these mutations. Ми представляємо застосування процесiв народження-знищення на конфiгурацiйних просторах до узагальненої моделi селекцiйно-мутацiйного балансу. Модель описує старiння популяцiї як процес накопичення мутацiй в генотипi. В математично строгому пiдходi мутацiї вiдповiдають точкам у абстрактному просторi. Наша модель описує нескiнчено-популяцiйну модель з безмежною кiлькiстю точок у континуумi. Динамiчне рiвняння, що описує систему, є типу Кiмури-Маруями. Проблема може бути поставлена в термiнах еволюцiї станiв (диференцiальнi рiвняння) або, що є еквiвалентно, за допомогою формули Фейнмана-Каца. Дослiджується питання iснування розв’язку, його асимптотичної поведiнки, властивостi граничного стану. У неепiстатичному випадку проблема була поставлена i розв’язана у [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. В нашiй моделi ми розглядаємо топологiчний простiр X як простiр позицiй мутацiй та вплив на епiстатичний потенцiал. 2008 Article Selection-mutation balance models with epistatic selection / Yu.G. Kondratiev, T. Kuna, N. Ohlerich // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 283-291. — Бібліогр.: 7 назв. — англ. 1607-324X PACS: 02.50.Ga DOI:10.5488/CMP.11.2.283 http://dspace.nbuv.gov.ua/handle/123456789/119142 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present an application of birth-and-death processes on configuration spaces to a generalized mutationselection balance model. The model describes the aging of population as a process of accumulation of mutations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of an epistatic potential on these mutations.
format Article
author Kondratiev, Yu.G.
Kuna, T.
Ohlerich, N.
spellingShingle Kondratiev, Yu.G.
Kuna, T.
Ohlerich, N.
Selection-mutation balance models with epistatic selection
Condensed Matter Physics
author_facet Kondratiev, Yu.G.
Kuna, T.
Ohlerich, N.
author_sort Kondratiev, Yu.G.
title Selection-mutation balance models with epistatic selection
title_short Selection-mutation balance models with epistatic selection
title_full Selection-mutation balance models with epistatic selection
title_fullStr Selection-mutation balance models with epistatic selection
title_full_unstemmed Selection-mutation balance models with epistatic selection
title_sort selection-mutation balance models with epistatic selection
publisher Інститут фізики конденсованих систем НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/119142
citation_txt Selection-mutation balance models with epistatic selection / Yu.G. Kondratiev, T. Kuna, N. Ohlerich // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 283-291. — Бібліогр.: 7 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kondratievyug selectionmutationbalancemodelswithepistaticselection
AT kunat selectionmutationbalancemodelswithepistaticselection
AT ohlerichn selectionmutationbalancemodelswithepistaticselection
first_indexed 2025-07-08T15:18:47Z
last_indexed 2025-07-08T15:18:47Z
_version_ 1837092493457358848