Novel phase transition in two-dimensional xy-models with long-range interaction
The purpose of this article is to give an overview of results concerning ordering and critical properties of two-dimensional ferromagnets including the dipolar interaction. We investigate a two-dimensional xy-model extended by the dipolar interaction. Describing our system by a nonlinear σ-model...
Gespeichert in:
Datum: | 2005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2005
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/119389 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Novel phase transition in two-dimensional xy-models with long-range interaction / P.G. Maier, F. Schwabl // Condensed Matter Physics. — 2005. — Т. 8, № 1(41). — С. 103-111. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | The purpose of this article is to give an overview of results concerning
ordering and critical properties of two-dimensional ferromagnets including
the dipolar interaction. We investigate a two-dimensional xy-model extended
by the dipolar interaction. Describing our system by a nonlinear σ-model
and using renormalization group methods we predict a phase transition to
an ordered state. This transition is due to the long-range dipolar interaction.
The ferromagnetic phase is governed by a low temperature fixed-point with
infinite dipolar coupling. In the critical regime we find exponential behavior
for the correlation length and the order parameter in contrast to the usual
power laws. The nature of the transition shows a striking similarity to the
Kosterlitz-Thouless transition. We show that there is a whole class of longrange
xy-models leading to such non-standard behavior. Parameterizing
the divergencies in terms of the correlation length we are able to calculate
the critical exponents. These exponents are correct in any loop order. |
---|