Low-temperature ¹Н NМR spectroscopic study of hydration properties of a hybrid system based on nanosilica, DNA and doxorubicin in the presence of C₆₀ fullerene

The structure of hydrate cover layers of SiO₂–DNA–Dox (where Dox: doxorubicin) and SiO₂–DNA–Dox–C₆₀ fullerene hybrids was studied by means of low-temperature ¹H NMR spectroscopy in tetrachloromethane. The hydration properties of SiO₂–DNA–Dox nanomaterials combined with fullerenes and their derivativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Turov, V.V., Prylutskyy, Yu.I., Ugnivenko, A.P., Barvinchenko, V.N., Krupskaya, T.V., Tsierkezos, N.G., Ritter, U.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119438
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Low-temperature ¹Н NМR spectroscopic study of hydration properties of a hybrid system based on nanosilica, DNA and doxorubicin in the presence of C₆₀ fullerene / V.V. Turov, Yu.I. Prylutskyy, A.P. Ugnivenko, V.N. Barvinchenko, T.V. Krupskaya, N.G. Tsierkezos, U. Ritter // Физика низких температур. — 2014. — Т. 40, № 3. — С. 309-316. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The structure of hydrate cover layers of SiO₂–DNA–Dox (where Dox: doxorubicin) and SiO₂–DNA–Dox–C₆₀ fullerene hybrids was studied by means of low-temperature ¹H NMR spectroscopy in tetrachloromethane. The hydration properties of SiO₂–DNA–Dox nanomaterials combined with fullerenes and their derivatives are extremely important for their further use as therapeutics in cancer treatment and for safety reasons. The findings reveal that the hydration properties of the hybrids differ from those of the solid DNA particulates or SiO₂–DNA systems due to the existence of different types of water clusters, namely the weakly- (WAW) and stronglyassociated water (SAW) clusters. For SAW clusters the radial distributions as well as the distributions of change in Gibbs free energy due to adsorptive interactions at the surfaces of the investigated systems were obtained.