Analysis of thermal expansivity of solids at extreme compression

Thermodynamics of solids in the limit of infinite pressure formulated by Stacey reveals that the thermal expansivity (alpha) of solids tends to zero at infinite pressure. The earlier models for the volume dependence of thermal expansivity do not satisfy the infinite pressure behaviour of thermal e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Shanker, J., Singh, B.P., Jitendra, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2008
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119580
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Analysis of thermal expansivity of solids at extreme compression / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 681-686. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119580
record_format dspace
spelling irk-123456789-1195802017-06-08T03:07:37Z Analysis of thermal expansivity of solids at extreme compression Shanker, J. Singh, B.P. Jitendra, K. Thermodynamics of solids in the limit of infinite pressure formulated by Stacey reveals that the thermal expansivity (alpha) of solids tends to zero at infinite pressure. The earlier models for the volume dependence of thermal expansivity do not satisfy the infinite pressure behaviour of thermal expansivity. The expressions for the volume dependence of the isothermal Anderson- Gruneisen parameter (delta T) considered in the derivation of earlier formulations for alpha (V) have been found to be inadequate. A formulation for the volume dependence of delta T is presented here which is similar to the model due to Burakovsky and Preston for the volume dependence of the Gruneisen parameter. The new formulation for alpha (V) reveals that delta T infinity must be greater than zero for satisfying the thermodynamic result according to which alpha tends to zero at in nite pressure. It is found that our model fits well the experimental data on thermal expansivity alpha (V) for hcp iron corresponding to a wide range of pressures (0 360 GPa). Згiдно умови, сформульованої Стейсi для термодинамiки твердих тiл в границi нескiнченого тиску, їх термiчне розширення прямує до нуля при нескiнченому тиску. Попереднi моделi для опису залежностi термiчного розширення вiд об’єму не задовiльняють цiй умовi. Вирази для залежностi iзотермiчного параметра Андерсона-Грюнайзена вiд об’єму, отриманi в попререднiх формулюваннях, виявилися невiдповiдними. Нами представлено об’ємну залежнiсть параметра Андерсона-Грюнайзена, яка є подiбною до отриманої ранiше для однiє з моделей. Отриманi нами результати демонструють, що параметр Андерсона-Грюнайзена при нескiнченому тиску мусить бути бiльшим нiж нуль для того, щоб задовiльнити термодинамiчну умову, згiдно якої термiчне розширення прямує до нуля при нескiнченому тиску. Знайдено, що наша модель узгоджується добре з експериментальними даними, що стосуються об’ємної залежностi для залiза з гексагональною щiльною упаковкою в широкiй областi тискiв (0–360 GPa). 2008 Article Analysis of thermal expansivity of solids at extreme compression / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 681-686. — Бібліогр.: 21 назв. — англ. 1607-324X PACS: 64.30.+y, 65.70.+y DOI:10.5488/CMP.11.4.681 http://dspace.nbuv.gov.ua/handle/123456789/119580 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Thermodynamics of solids in the limit of infinite pressure formulated by Stacey reveals that the thermal expansivity (alpha) of solids tends to zero at infinite pressure. The earlier models for the volume dependence of thermal expansivity do not satisfy the infinite pressure behaviour of thermal expansivity. The expressions for the volume dependence of the isothermal Anderson- Gruneisen parameter (delta T) considered in the derivation of earlier formulations for alpha (V) have been found to be inadequate. A formulation for the volume dependence of delta T is presented here which is similar to the model due to Burakovsky and Preston for the volume dependence of the Gruneisen parameter. The new formulation for alpha (V) reveals that delta T infinity must be greater than zero for satisfying the thermodynamic result according to which alpha tends to zero at in nite pressure. It is found that our model fits well the experimental data on thermal expansivity alpha (V) for hcp iron corresponding to a wide range of pressures (0 360 GPa).
format Article
author Shanker, J.
Singh, B.P.
Jitendra, K.
spellingShingle Shanker, J.
Singh, B.P.
Jitendra, K.
Analysis of thermal expansivity of solids at extreme compression
Condensed Matter Physics
author_facet Shanker, J.
Singh, B.P.
Jitendra, K.
author_sort Shanker, J.
title Analysis of thermal expansivity of solids at extreme compression
title_short Analysis of thermal expansivity of solids at extreme compression
title_full Analysis of thermal expansivity of solids at extreme compression
title_fullStr Analysis of thermal expansivity of solids at extreme compression
title_full_unstemmed Analysis of thermal expansivity of solids at extreme compression
title_sort analysis of thermal expansivity of solids at extreme compression
publisher Інститут фізики конденсованих систем НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/119580
citation_txt Analysis of thermal expansivity of solids at extreme compression / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 681-686. — Бібліогр.: 21 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT shankerj analysisofthermalexpansivityofsolidsatextremecompression
AT singhbp analysisofthermalexpansivityofsolidsatextremecompression
AT jitendrak analysisofthermalexpansivityofsolidsatextremecompression
first_indexed 2025-07-08T16:12:37Z
last_indexed 2025-07-08T16:12:37Z
_version_ 1837095883863228416
fulltext Condensed Matter Physics 2008, Vol. 11, No 4(56), pp. 681–686 Analysis of thermal expansivity of solids at extreme compression J.Shanker, B.P.Singh∗, K.Jitendra Department of Physics, Institute of Basic Sciences, Khandari, Agra (U.P.) INDIA 282002 Received August 28, 2006, in final form October 16, 2007 Thermodynamics of solids in the limit of infinite pressure formulated by Stacey reveals that the thermal ex- pansivity (alpha) of solids tends to zero at infinite pressure. The earlier models for the volume dependence of thermal expansivity do not satisfy the infinite pressure behaviour of thermal expansivity. The expressions for the volume dependence of the isothermal Anderson- Grüneisen parameter (delta T) considered in the derivation of earlier formulations for alpha (V) have been found to be inadequate. A formulation for the volume dependence of delta T is presented here which is similar to the model due to Burakovsky and Preston for the volume dependence of the Grüneisen parameter. The new formulation for alpha (V) reveals that delta T infinity must be greater than zero for satisfying the thermodynamic result according to which alpha tends to zero at infinite pressure. It is found that our model fits well the experimental data on thermal expansivity alpha (V) for hcp iron corresponding to a wide range of pressures (0–360 GPa). Key words: thermal expansivity, Anderson-Grüneisen parameter, thermodynamics, hcp iron PACS: 64.30.+y, 65.70.+y 1. Introduction The Anderson-Grüneisen parameter is an important physical quantity for understanding the thermoelastic properties of solids at high pressures and high temperatures [1]. In the present paper we study the volume dependence of the Anderson-Grüneisen parameter and derive an improved formula for thermal expansivity of solids which is found to be consistent with the thermodynamic constraint at extreme compression. The isothermal Anderson-Grüneisen δTis defined as [1] δT = − 1 αKT ( ∂KT ∂T ) P , (1) where α is the thermal expansivity or volume thermal expansion coefficient α = 1 V ( ∂V ∂T ) P (2) and KT, the isothermal bulk modulus KT = −V ( ∂P ∂V ) T . (3) Using the thermodynamic identity ( ∂α ∂P ) T = 1 K2 T ( ∂KT ∂T ) P (4) in equation (1) we get δT = α V ( ∂α ∂V ) T . (5) ∗E-mail: drbps.ibs@gmail.com c© J.Shanker, B.P.Singh, K.Jitendra 681 J.Shanker, B.P.Singh, K.Jitendra Equation (5) can be integrated to obtain α as a function of volume V , provided we know the dependence of the Anderson-Grüneisen parameter δT on V . It has been found by Anderson and Isaak [2] that δT depends on V in the following manner δT = δ0 T ( V V0 )k , (6) where δT = δ0 T at V = V0, the reference state (P = 0). k is a dimensionless thermoelastic parameter defined as [2] k = ( ∂ ln δT ∂ ln V ) T . (7) An alternative form for δT(V ) has been considered by Chopelas and Boehler [3] as follows δT = (δ0 T + 1) V V0 − 1. (8) Equation (8) is the basis for an equation of state (EOS) formulated by Kumar [4,5] which turns out to be the same as the usual Tait EOS [6]. Equation (6) with k = 1 is also used for developing an EOS and for investigating the thermoelastic properties of solids [7–10]. The Chopelas-Boehler formulation (equation 8) when used in equation (5) gives the following relationship [7,8] α α0 = ( V V0 ) −1 exp [ − ( δ0 T + 1 ) ( 1 − V V0 )] , (9) where α0is the thermal expansivity at P = 0. On the other hand, when the Anderson- Isaak formulation (equation 6) is used in equation (5), we get α α0 = exp { − δ0 T k [ 1 − ( V V0 )k ]} . (10) Anderson et al. [8] have made a comparative study of equations (9) and (10). It should be emphasized here that the Chopelas-Boehler relationship (equation 9) and the Anderson-Isaak for- mulation (equation 10) are not consistent with the infinite pressure behaviour based on thermo- dynamics. The thermal expansivity α should tend to zero at extreme compression, V approaching zero [11,12]. But equation (9) predicts α → ∞, and equation (10) gives a finite value of α at extreme compression (V → 0, P → ∞). We therefore present a revised formulation for α(V). 2. Formulation based on the Burakovsky-Preston model Burakovsky and Preston [13] have recently formulated a model for the volume dependence of the Grüneisen parameter γ based on the following expression γ = γ∞ + a ( V V0 )1/3 + b ( V V0 )n , (11) where γ∞ is the value of γ at extreme compression V → 0. The value of γ∞= 1/2 or 2/3 based on the Thomas-Fermi model [13,14]. γ∞ is treated as a universal constant, i.e., the same for all materials, whereas a, b and n(> 1) are material-dependent parameters. It was found [15] that the Burakovsky-Preston model equation (11) satisfies the thermodynamic constraints γ → γ∞, q = (d ln γ/d lnV )T → 0, and λ = (d ln q/d ln V )T → λ∞, where γ∞ and λ∞ are finite positive values. It is appropriate to consider that the Anderson-Grüneisen parameter δT follows a volume de- pendence similar to equation (11). A similarity for the volume dependence of γ and δT was pointed out earlier by Tallon [16]. We can thus write δT = δT∞ + c1 ( V V0 )1/3 + c2 ( V V0 )m , (12) 682 Analysis of thermal expansivity of solids at extreme compression where δT∞ represents the value of δT at V → 0. In analogy with equation (11), δT∞ can be considered as a universal constant and c1, c2 and m as constants for a given material. When we use equation (12) in equation (5), and then on integrating we find the following expression for the thermal expansivity α, α α0 = ( V V0 )δT∞ exp { −3c1 [ 1 − ( V V0 )1/3 ] − c2 m [ 1 − ( V V0 )m] } . (13) On comparing equation (13) with equations (9) and (10) we note that δT∞ = −1 in the Chopelas-Boehler formulation (equation 9), and δT∞= 0 in the Anderson-Isaak formulation. The infinite pressure condition for α based on thermodynamics (α → 0 at V → 0) is satisfied only when δT∞ is greater than zero. This is a result similar to that (δS∞ > 0) obtained by Stacey and Davis [11]. Here δS is the adiabatic Anderson-Grüneisen parameter related to the temperature derivative of adiabatic bulk modulus KS [1] δS = − 1 αKS ( ∂KS ∂T ) P . (14) It should be mentioned that KS and KT are related by the thermodynamic identity KS = KT(1 + γαT ) . (15) Stacey and Davis [11] emphasized that isothermal and adiabatic properties become identical in the limit of infinite pressure. So, when δS∞ > 0, we should also have δT∞ > 0. An independent expression for δT∞ can be obtained from the thermodynamic identity [1] δT = K ′ T − 1 + q + ( ∂ ln CV ∂ ln V ) T , (16) which gives at P → ∞ δT∞ = K ′ ∞ − 1 + [( ∂ ln CV ∂ ln V ) T ] ∞ . (17) To know more about δT∞, we use the following thermodynamic identities [1,12] [ ∂ ln(αKT) ∂ ln V ] T = δT − K ′ T (18) and [ ∂ ln(αKT) ∂ ln V ] S = q − 1. (19) 3. Results and discussions The Grüneisen parameter is related to the thermal and elastic properties of the material by the formula γ = αKTV CV = αKSV CP , (20) where CV and CP are the specific heats at constant volume and constant pressure, respectively. It follows from equation (20) that α should decrease with a decreasing volume or an increasing pressure since gamma decreases and bulk modulus increases faster than 1/V . It is desirable to judge the suitability of equation (13) for α (V) which is based on a model for δT(V) (equation 12) similar to that (equation 11) formulated by Burakovsky and Preston [13] for γ(V). We have in all five parameters viz. α0, δT∞, c1, c2 and m in equation (13). Equation (12) at V = V0 gives δ0 T = δT∞ + c1 + c2 . (21) 683 J.Shanker, B.P.Singh, K.Jitendra We take δT∞= 2/3 based on equation (17) using K ′ ∞ = 5/3 derived from the Thomas-Fermi model [13,14], and neglecting the last term in equation (17) for the volume derivative of CV since it is very small at high pressure and high temperature [1,11]. The value 2/3 for δT∞ can also be supported from the identities (18) and (19). Equation (18) can be integrated along an isotherm whereas equation (19) can be integrated along an adiabat. We integrate equation (19) between the limits V = V0 to V → 0 to obtain [ln(αKT)] 0 V0 = 0 ∫ V0 (q − 1) dV V . (22) Since q = (d ln γ/d lnV )T becomes zero at V → 0 [11], it is found from equation (22) that the product αKT tends to infinity at P → ∞ or V → 0. Equation (18) was used by Anderson [17] and others [18, 19] to discuss the nature of variation of αKT with volume. According to equation (18), αKT → ∞ only when δT − K ′ T is negative at P → ∞. This reveals that δT∞ must be less than K ′ ∞ . Thus the value of δT∞ should be constrained as follows: 0 < δT∞ < K ′ ∞ . (23) The value of 2/3 for δT∞ taken in the present study satisfies the above constraint. δT∞ should be considered as a universal constant in the same sense as γ∞ and K ′ ∞ . The other parameters δ0 T , α0, c1, c2 and m depend on the material chosen for the study. To judge the suitability of equation (13) for α(V ) we use the experimental data for hcp iron which was well studied for a wide range of pressures [20,21]. For hcp iron we take δ0 T = 5.32 and α0 = 7.83 · 10−5 K−1 from Isaak and Anderson [20]. Using δ0 T = 5.32 and δT∞ = 2/3 in equation (21) we have c1 + c2 = 4.65. (24) The parameters c1, c2 and m are now fitted to experimental data [20,21] for hcp iron in the pressure range 0–360 GPa given in table 1. The fitted parameters are found to have the values c1= 3.60, c2 = 1.05, and m = 1.5. With the help of these parameters, values of α(V ) are determined using equation (13) and then compared with the experimental values reported by Isaak and An- derson [20] in figure 1. We find that our model fits the experimental data well particularly in view of the fact that the experimental data become increasingly imprecise as pressure increases due to non-hydrostaticity, comparably low quality of pressure standards, recrystallization etc. Table 1. Experimental data for the thermal expansivity α (P, V) in 10−5K−1 for hcp iron [20,21]. V/V0 P (GPa) α (10−5 K−1) 1.0000 0 7.83 0.8767 30.0 3.88 0.8470 41.8 3.42 0.8172 56.2 2.94 0.7875 74.0 2.47 0.7578 95.9 2.02 0.7281 123.1 1.61 0.6984 156.8 1.27 0.6686 199.0 1.00 0.6389 252.1 0.82 0.6092 319.3 0.71 0.6048 330.0 0.70 0.5944 359.5 0.68 684 Analysis of thermal expansivity of solids at extreme compression Figure 1. Thermal expansivity α(V ) for hcp iron, continuous curve calculated in the present study (equation 13), and experimental data [20,21]. 4. Conclusions It was emphasized by Tallon [16] that the volume dependence of δTshould be similar to that of γ. The volume dependence of δT is required for investigating the variation of thermal expansivity α with volume V . We have presented a formulation for α(V ) (equation 13) using a model for δT (V ) (equation 12) which is similar to the model for γ(V ) (equation 11) originally due to Burakovsky and Preston [13]. In both the models (equation (11) and equation (12)) the first term on the right is a universal constant (γ∞ or δT∞), and the remaining two terms depend on the volume representing the concave up and concave down behaviour [13]. The experimental data for thermal expansivity of hcp iron [20,21] for a wide pressure range up to 360 GPa have been fitted well with the help of equation (13) using the reasonable values of parameters, m > 1 and c1/c2 = 3.4, in agreement with the original model due to Burakovsky and Preston [13]. Acknowledgement We are thankful to the reviewer for his valuable comments which have been very useful in revising the manuscript. Thanks are also due to Mrs. Sudha Singh for her help in the computational work. References 1. Anderson O.L. Equation of state of solids for geophysics and ceramic sciences. Oxford University Press, New York, 1995. 2. Anderson O.L., Isaak D.G., J. Phys. Chem. Solids, 1993, 54, 221. 3. Chopelas A., Boehler R., Geophys. Res. Lett., 1992, 19, 1983. 4. Kumar M., Physica B, 1995, 212, 391. 5. Kumar M., Physica B, 2002, 311, 340. 6. Shanker J., Singh B., Kushwah S.S., Physica B, 1997, 229, 419. 7. Kumar M., Solid State Commun., 1994, 92, 463. 8. Anderson O.L., Masuda K., Isaak D.G., Phys. Earth Planet. Inter., 1995, 91, 3. 9. Raju S., Sivasubramanian K., Mohandas E., Physica B, 2002, 324, 312. 10. Sushil K., Physica B, 2005, 367, 114. 11. Stacey F.D., Davis P.M., Phys. Earth Planet. Inter., 2004, 142, 137. 685 J.Shanker, B.P.Singh, K.Jitendra 12. Stacey F.D., Rep. Prog. Phys., 2005, 68, 341. 13. Burakovsky L., Preston D.L., J. Phys. Chem. Solids, 2004, 65, 1581. 14. Holzapfel W.B., Hartwig M., Sievers W., J. Phys. Chem. Ref. Data, 2001, 30, 515. 15. Shanker J., Singh B.P, Baghel H.K., Physica B, 2007, 387, 409. 16. Tallon J.L., J. Phys. Chem. Solids, 1980, 41, 837. 17. Anderson O.L., J. Phys. Chem. Solids, 1997, 58, 335. 18. Gaurav S., Sharma B.S., Sharma S.B., Upadhyaya S.C., J. Phys. Chem. Solids, 2004, 65, 1635. 19. Chauhan R.S., Singh C.P., Physica B, 2007, 387, 352. 20. Isaak D.G., Anderson O.L., Physica B, 2003, 328, 345. 21. Anderson O.L., Dubrovinsky L.S., Saxena S.K., LeBihan L., Geophys. Res. Lett., 2001, 28, 399. Аналiз термiчного розширення твердих тiл при екстремальному стисненнi Дж.Шанкер, Б.П.Сiнг, K.Джiтендра Фiзичний факультет, Iнститут природничих наук, Кхандарi, Агра Iндiя 282002 Отримано 28 серпня 2006 р., в остаточному виглядi – 16 жовтня 2007 р. Згiдно умови, сформульованої Стейсi для термодинамiки твердих тiл в границi нескiнченого тиску, їх термiчне розширення прямує до нуля при нескiнченому тиску. Попереднi моделi для опису залежно- стi термiчного розширення вiд об’єму не задовiльняють цiй умовi. Вирази для залежностi iзотермi- чного параметра Андерсона-Грюнайзена вiд об’єму, отриманi в попререднiх формулюваннях, вияви- лися невiдповiдними. Нами представлено об’ємну залежнiсть параметра Андерсона-Грюнайзена, яка є подiбною до отриманої ранiше для однiє з моделей. Отриманi нами результати демонструють, що параметр Андерсона-Грюнайзена при нескiнченому тиску мусить бути бiльшим нiж нуль для то- го, щоб задовiльнити термодинамiчну умову, згiдно якої термiчне розширення прямує до нуля при нескiнченому тиску. Знайдено, що наша модель узгоджується добре з експериментальними дани- ми, що стосуються об’ємної залежностi для залiза з гексагональною щiльною упаковкою в широкiй областi тискiв (0–360 GPa). Ключовi слова: термiчне розширення, параметр Андерсона-Грюнайзена, термодинамiка PACS: 64.30.+y, 65.70.+y 686