Non-equilibrium stochastic dynamics in continuum: The free case
We study the problem of identification of a proper state-space for the stochastic dynamics of free particles in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is described by a fixed Markov process M on a Riemannian manifold X. The main probl...
Saved in:
Date: | 2008 |
---|---|
Main Authors: | Kondratiev, Y., Lytvynov, E., Röckner, M. |
Format: | Article |
Language: | English |
Published: |
Інститут фізики конденсованих систем НАН України
2008
|
Series: | Condensed Matter Physics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/119593 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Non-equilibrium stochastic dynamics in continuum: The free case / Y. Kondratiev, E. Lytvynov, M. Röckner // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 701-721. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum
by: Lytvynov, E., et al.
Published: (2008) -
Stochastic dynamics of quantized vortices. Continuum and discrete approaches
by: S. K. Nemirovskij
Published: (2020) -
Equilibrium stochastic dynamics of Poisson cluster ensembles
by: Bogachev, L., et al.
Published: (2008) -
Surface Tension Gradient as Additional Driving Force for Grain Boundary Diffusion. Equilibrium and Non-Equilibrium Cases
by: Bokstein, B., et al.
Published: (2013) -
Surface Tension Gradient as Additional Driving Force for Grain Boundary Diffusion. Equilibrium and Non-Equilibrium Cases
by: B. Bokstein, et al.
Published: (2013)