A perturbation correction of the Flory-Huggins polymer solution theory

A perturbation theory modification of the Flory-Huggins polymer solution theory is presented. The proposed perturbation equation utilizes the results by Tukur et al [J. Chem. Phys. 110 (7), 3463, 1999] for hard-sphere binary mixture at infinite size ratio. The resulting perturbation theory equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
1. Verfasser: Mansoori, G.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2005
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119602
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A perturbation correction of the Flory-Huggins polymer solution theory / G.A. Mansoori // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 389–396. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119602
record_format dspace
spelling irk-123456789-1196022017-06-08T03:06:11Z A perturbation correction of the Flory-Huggins polymer solution theory Mansoori, G.A. A perturbation theory modification of the Flory-Huggins polymer solution theory is presented. The proposed perturbation equation utilizes the results by Tukur et al [J. Chem. Phys. 110 (7), 3463, 1999] for hard-sphere binary mixture at infinite size ratio. The resulting perturbation theory equations are used to predict properties of three different polymers with different molecular weights in different solvents. Comparison of the proposed perturbation calculations with those of the Flory-Huggins theory and the experimental data indicate that the proposed perturbation method appreciably improves the prediction of polymer solution properties especially at large polymer/solvent size ratios Представлено покращення теорії полімерних розчинів Флорі-Хаггінса на основі теорії збурень. Запропоноване рівняння збурення використовує результати Тукур та ін. [J. Chem. Phys. 110 (7), 3463, 1999] для бінарної суміші твердих сфер для безмежно великого співвідношення розмірів. Отримані рівняння теорії збурень використовуються для передбачення властивостей трьох різних полімерів з різною молекулярною вагою і у різних розчинниках. Порівняння отриманих результатів я результатами теорії Флорі-Хаггінса і експериментальними даними показує, що запропонований метод збурень суттєво покращує розрахунок властивостей полімерних розчинів, особливо у випадку великих співвідношень розмірів полімера і розчинника. 2005 Article A perturbation correction of the Flory-Huggins polymer solution theory / G.A. Mansoori // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 389–396. — Бібліогр.: 20 назв. — англ. 1607-324X PACS: 61.25.Hq, 64, 64.10.+h, 64.60.-I, 65 DOI:10.5488/CMP.8.2.389 http://dspace.nbuv.gov.ua/handle/123456789/119602 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A perturbation theory modification of the Flory-Huggins polymer solution theory is presented. The proposed perturbation equation utilizes the results by Tukur et al [J. Chem. Phys. 110 (7), 3463, 1999] for hard-sphere binary mixture at infinite size ratio. The resulting perturbation theory equations are used to predict properties of three different polymers with different molecular weights in different solvents. Comparison of the proposed perturbation calculations with those of the Flory-Huggins theory and the experimental data indicate that the proposed perturbation method appreciably improves the prediction of polymer solution properties especially at large polymer/solvent size ratios
format Article
author Mansoori, G.A.
spellingShingle Mansoori, G.A.
A perturbation correction of the Flory-Huggins polymer solution theory
Condensed Matter Physics
author_facet Mansoori, G.A.
author_sort Mansoori, G.A.
title A perturbation correction of the Flory-Huggins polymer solution theory
title_short A perturbation correction of the Flory-Huggins polymer solution theory
title_full A perturbation correction of the Flory-Huggins polymer solution theory
title_fullStr A perturbation correction of the Flory-Huggins polymer solution theory
title_full_unstemmed A perturbation correction of the Flory-Huggins polymer solution theory
title_sort perturbation correction of the flory-huggins polymer solution theory
publisher Інститут фізики конденсованих систем НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/119602
citation_txt A perturbation correction of the Flory-Huggins polymer solution theory / G.A. Mansoori // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 389–396. — Бібліогр.: 20 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT mansooriga aperturbationcorrectionofthefloryhugginspolymersolutiontheory
AT mansooriga perturbationcorrectionofthefloryhugginspolymersolutiontheory
first_indexed 2025-07-08T16:14:59Z
last_indexed 2025-07-08T16:14:59Z
_version_ 1837096030428987392
fulltext Condensed Matter Physics, 2005, Vol. 8, No. 2(42), pp. 389–396 A perturbation correction of the Flory-Huggins polymer solution theory G.A.Mansoori∗ University of Illinois at Chicago, 810 S. Clinton Street, Chicago, IL 60607–7000 USA Received November 11, 2004 A perturbation theory modification of the Flory-Huggins polymer solution theory is presented. The proposed perturbation equation utilizes the re- sults by Tukur et al [J. Chem. Phys. 110 (7), 3463, 1999] for hard-sphere binary mixture at infinite size ratio. The resulting perturbation theory equa- tions are used to predict properties of three different polymers with differ- ent molecular weights in different solvents. Comparison of the proposed perturbation calculations with those of the Flory-Huggins theory and the experimental data indicate that the proposed perturbation method appre- ciably improves the prediction of polymer solution properties especially at large polymer/solvent size ratios. Key words: perturbation theory, Flory-Huggins theory, hard-sphere equation PACS: 61.25.Hq, 64, 64.10.+h, 64.60.-I, 65 For publication in the special of the journal honoring the 70th birthday of Professor Douglas Henderson 1. Introduction Various statistical mechanical theories of polymer solutions have been developed during the last half a century. The original and one of the best known of these the- ories is the Flory-Huggins theory [1,2]. It is shown that the Flory-Huggins theory is a rather crude approximation for polymer solutions when the polymer to solvent size ratio increases [3]. There have been several attempts to improve the predic- tive capability of the Flory-Huggins theory [4–9] by empirical modification of its interaction parameter (χ). In the perturbation modification of the Flory-Huggins theory presented here the original expression of the polymer solution theory and ∗E-mail: mansoori@uic.edu c© G.A.Mansoori 389 G.A.Mansoori its interaction parameter are retained. However, additional terms are added to the Flory-Huggins equation correcting its asymptotic value at infinite size ratio and at infinite temperature. According to the Flory-Huggins theory [10] for the mixture of a polymer and a solvent the following expression holds for the Gibbs free energy of mixing ∆GM: ∆GFH M = RT (n1 ln ϕ1 + n2 ln ϕ2 + χ1n1ϕ2) , (1) where ni and ϕi are number of moles and volume fraction of component i, respecti- vely, and χ1 is the Flory-Huggins interaction parameter. According to equation (1), the expressions for activities of solvent (1) and polymer (2) are as follows: ln aFH 1 = ln ϕ1 + ( 1 − 1 r ) ϕ2 + χ1ϕ 2 2 , (2) ln aFH 2 = ln ϕ2 − (r − 1)(1 − ϕ2) + χ1r(1 − ϕ2) 2 . (3) In the above equations aFH i and ϕi are activity and volume fraction of component i, respectively, and r is segment fraction which is the ratio of molecular volume of polymer to molecular volume of solvent i.e. : r ≡ (ν2/ν1) = (σ2/σ1) 3, (4) where, ν1, ν2 are molecular volume and σ1 and σ2 are molecular diameters of solvent and polymer, respectively. The Flory-Huggins interaction parameter (χ1) has the following definition: χ1 ≡ z∆w12x1/kT, (5) which is a dimensionless quantity [10] that characterizes the interaction energy per solvent molecule divided by kT . In equation (5) z is coordination number and ∆w12 is interchange energy. From the expressions of the activities, equations (2) and (3), the following equa- tions for the excess Gibbs free energy over an ideal solution, entropy of dilution and enthalpy of dilution of the polymer and solvent for the binary polymer plus solvent mixture are derived: GE FH RT = x1 [ ln ϕ1 + ( 1 − 1 r ) ϕ2 + χ1ϕ 2 2 − ln x1 ] + x2 [ lnϕ2 + (r − 1) ϕ1 + χ1rϕ 2 1 − ln x2 ] . (6) According to equations (2), (3) and (5) : ∆S̄FH 1 = −R [ ln ϕ1 + ( 1 − 1 r ) ϕ2 ] , (7) ∆S̄FH 2 = −R [ ln ϕ2 − (r − 1)ϕ1 ] (8) 390 Perturbation correction of Flory-Huggins theory and also: ∆H̄FH 1 = RTϕ2 2χ1 , (9) ∆H̄FH 2 = RTrϕ2 1χ1 . (10) In the above equations ∆S̄FH i and ∆H̄FH i are entropy of dilution and enthalpy of dilution of component i. Considering the equation (1) it can be shown that: lim σi→0 ( ∂GE FH /RT ∂σi ) T,P,σj 6=i = 0. (11) This equation indicates that according to the Flory-Huggins theory the partial derivative of the excess Gibbs free energy of the mixture at the hard sphere limit (T → ∞) and at infinite size ratio limit (σi → 0) diminishes. Recently Tukur et al [11] showed that for a binary hard sphere mixture of infinite size difference the following expression is rigorously valid for partial derivative of the excess Helmholtz free energy, AE, of the polymer+solvent mixture with respect to the molecular diameter of solvent when the solvent diameter approaches zero: lim σi→0 ( ∂AE hs /RT ∂σi ) T,V,σj 6=i = π/2 · NAρxixjσ 2 j 1 − π/6 · NAρxjσ 3 j , (12) where ρ, NA, xi, σi and T are mixture density, Avogadro’s number, mole fraction of component i, molecular size of component i and absolute temperature, respectively. This expression can be applied for the excess Gibbs free energy, GE, assuming the excess volume of the mixture is negligible, i.e. lim σi→0 ( ∂GE hs /RT ∂σi ) T,P,σj 6=i = π/2 · NAρxixjσ 2 j 1 − π/6 · NAρxjσ3 j for νE = 0. (13) In the following section we utilize equation (13) in a perturbation correction of the Flory-Huggins theory of polymer solutions. 2. Perturbation modification of the Flory-Huggins theory Considering that the infinite temperature limit is practically equivalent to the hard-sphere limit and comparing equations (11) and (13) it is obvious that the hard-sphere limit (T → ∞) at the infinite size ratio (σ1 → 0) as predicted by the Flory-Huggins equation is not correct. This indicates that the Flory-Huggins expression for excess Gibbs is the first term of the double perturbation expansion of excess Gibbs with respect to powers of (σ1) and (1/T ), GE RT = GE FH RT +   ∂ ( GE FH RT ) ∂σ1   σ1=0 · σ1 +   ∂ ( GE FH RT ) ∂ ( 1 T )   T=∞ · ( 1 T ) + higher order terms.(14) 391 G.A.Mansoori Now, by integrating equation (13) with respect to σ1 and (1/T ) and replacing for the second and third terms in equation (14) and neglecting the higher order terms, of the orders of O[σ1] 2, O[σ1(1/T )], O[1/T ]2 and higher, the following expression for the perturbation modification of the Flory-Huggins excess Gibbs free energy will be derived [12,13]: GE RT = GE FH RT + { 3 [ (η1/(1 − η1))(s − 1)/x1 + (η2/(1 − η2))(s −1 − 1)/x2 ] + [ α(η1(Es − 1)/x1 + η2(s −1 − 1)/x2) ] 1 RT } x1x2 . (15) In this equation α = fε2 , E = ε2/ε1 . (16) s represents the ratio of molecular diameters of polymer to solvent, i.e. s ≡ σ2/%1 = r1/3 ≡ (ν2/ν1) 1/3 , (17) and ηi is the packing fraction of component i in the mixture, ηi ≡ π 6 NAρxiσ 3 i , (18) equation (15) can predict the exact asymptotic value given by equation (13). In what follows equation (15) is used to calculate the properties of various polymer solutions with different polymer/solvent size ratios and comparisons are made with the Flory-Huggins theory. It is shown that the proposed perturbation expression is capable of predicting polymer solution properties more accurately than the Flory- Huggins theory when the size difference between the polymer and solvent increases. Starting with equation (15), expressions for the other thermodynamic properties of polymer solution can be derived: The expressions for the activity of solvent, a1 = x1γ1, and activity of polymer, a2 = x2γ2, are derived as follows [12]: ln a1 = ln aFH 1 + { 3 ( η1/x1(s − 1) (1 − η1)2 + η2/x2(s −1 − 1)(1 − η2/x2) (1 − η2)2 ) × α RT ( η1/x1(Es − 1) + (s−1 − 1)η2/x2 ) } x2 2 (19) and ln a2 = ln aFH 1 + { 3 ( η1/x1(1 − η1/x1)(s − 1) (1 − η1)2 + η2/x2(s −1 − 1) (1 − η2)2 ) × α RT ( η1(Es − 1)/x1 + η2(s −1 − 1)/x2 ) } x2 1 (20) since ln γi = ( ∂ ( nGE/RT ) /∂ni ) T,P,nj 6=i and ai = xiγi. In these equations aFH 1 and aFH 2 are the Flory-Huggins solvent and polymer activities, respectively as given by 392 Perturbation correction of Flory-Huggins theory equations (2) and (3). Expressions for activities of solvent and polymer and equa- tion (5), can be used to derive the following equation for the entropy of dilution, ∆Si = −R [∂(T ln ai)/∂T ]P,ϕ2 of solvent due to addition of the polymer: ∆S̄1 = ∆S̄FH 1 − 3R ( η1/x1(s − 1) (1 − η1)2 + η2/x2(1/s − 1)(1 − η2/x2) (1 − η2)2 ) x2 2 (21) and ∆S̄2 = ∆S̄FH 2 − 3R ( η1/x1(1 − η1/x1)(s − 1) (1 − η1)2 + η2/x2(1/s − 1) (1 − η2)2 ) x2 2 . (22) Also from the expressions for the activities the following equations for the heat of dilutions, ∆H̄i = −RT 2 (∂ ln ai/∂T )P,ϕ2 , are derived: ∆H̄1 = ∆H̄FH 1 + α [(1/s − 1)η2/x2 + (Es − 1)η1/x1]x 2 2 (23) and ∆H̄2 = ∆H̄FH 2 + α [(1/s − 1)η2/x2 + (Es − 1)η1/x1] x 2 1 . (24) In the following section, the above equations are used to calculate properties of various polymer solutions and the results are compared with the calculations based on the Flory-Huggins relations and experimental data. Figure 1. Solvent (1) heat of dilution versus volume fraction of polymer (2) for the solution of benzene (solvent) in PDMS3,850 (polymer) at 25◦C. The solid circles are the experimental data [12], the dashed lines are the calculations based on the Flory-Huggins theory and the solid lines are the calculations based on the present perturbation model. 3. Calculations and discussions In order to test the present perturbation theory model three different poly- mer+solvent systems with various (solvent/polymer) size ratios, for which experi- mental data are available [14–16], are used. These systems (Benzene+PDMS3,850, 393 G.A.Mansoori Figure 2. The same as figure 1 but for the system toluene (sol- vent) in PS290,000 (polymer) and the experimental data is taken from [12]. Figure 3. The same as figure 1 but for the system MEK (sol- vent) in PS290,000 (polymer) and the experimental data is taken from [12]. Table 1. Parameters used for the present study. group-cont. method Flory-Huggins Perturbation model system σ1 [nm] E[–] σ2 [nm] χ1 [–] σ2 [nm] χ1 [–] α[J/mol] × 10−3 Benzene+PDMS 3,850 0.535 1.620 1.895 0.809 1.500 0.426 –36.271 Toluene+PS 290,000 0.574 1.602 7.797 0.343 6.300 0.114 806.077 MEK+PS 290,000 0.539 1.480 7.732 0.725 6.800 0.149 693.142 Toluene+PS290,000 and MEK+PS290,000) are identical to those used in the origi- nal paper of Flory [10]. In the first stage parameters E and η1 of the polymers are calculated [12] using a group contribution method [17,18]. Parameters χ1, σ1 and α are determined [12] using experimental solvent activity data using equation (19). Similarly parameters χ1 and σ2 of the Flory-Huggins theory are calculated from the experimental activity data. Numerical values of all these parameters for the three polymer-solvent mixtures are reported in table 1. The enthalpy of dilution of the solvents in polymer solution systems are calculat- ed using equations (9) and (23). The results of calculations are shown in figures 1–3. According to these figures the proposed perturbation modification generally im- proves the predictions. As the size difference between polymer and solvent increases, the improved predictions by the perturbation model are more pronounced. The entropy of dilution of solvents in polymers of the same three systems are predicted and the results are reported in figure 4 based on the present perturba- tion model and the Flory-Huggins theory. According to this figure, the entropy of dilutions predicted by the Flory-Huggins equation is not in agreement with the 394 Perturbation correction of Flory-Huggins theory Figure 4. Solvent (1) entropy of dilution versus volume fraction of poly- mer (2) for three different solvent+polymer mixtures (Benzene+PDMS3,850, Toluene+PS290,000 and MEK+PS290,000) at 25◦C. In this figure predictions by the present perturbation model are compare with the Flory-Huggins theory and the experimental data [12,13]. experimental data specially for high molecular weight polymers while the calculati- ons by the perturbation model are in very good agreement with the experimental data both for low and high molecular weight polymers. The entropy of dilutions predicted by the Flory-Huggins theory, for high molecular weight polymer soluti- ons (Toluene+PS290,000 and MEK+PS290,000) are in error, nearly constant, and independent of the polymer under consideration. The results reported in this paper demonstrate the major improvement in pre- dicting polymer solution properties using the proposed perturbation modification of the Flory-Huggins theory. The improvement becomes more appreciable for polymer solutions with large size difference between the polymer and solvent. Acknowledgements This research is supported in part by MSTRI. The author would like to thank Dr. A.Eliassi, Prof. E.Z.Hamad, Prof. H.Modarress and Mr. N.M.Tukur for their helpful communications. References 1. Flory P.J., J. Chem. Phys., 1942, 10, 51. 2. Huggins M.L., J. Phys. Chem., 1942, 46, 151. 3. Meroni A., Pimpinelli A., Reatto L., J. Chem. Phys., 1987, 86, 3644. 4. Mumby S.J., Sher P., Macromolecules, 1994, 27, 689. 5. Chan H.S., Dill K.A., J. Chem. Phys., 1994, 101, 7007. 395 G.A.Mansoori 6. Chiu H.W., Kyu T., J. Chem. Phys., 1997, 107, 6859. 7. Sun Z., Wang C.H., J. Chem. Phys., 1995, 103, 3762. 8. Ryu J.H., J. Chem. Phys., 1997, 108. 9. Sariban A., Binder K., J. Chem. Phys., 1987, 86, 5859. 10. Flory P.J. Physical Chemistry of High Polymer Solutions, 1953. 11. Tukur M.N., Hamad E.Z., Mansoori G.A., Hard-sphere mixture excess free energy at infinite size ratio, J. Chem. Phys., 1999, 110, No. 7, 3463. 12. Eliassi A., Modarress H., Mansoori G.A., Ir. Polymer J., 2003, 12, No. 5, 367. 13. Keshmirizadeh E., Modarress H., Eliassi A., Mansoori G.A., Eur. Polymer J., 2003, 39, No. 6, 1141. 14. Eliassi A., Modarress H., Mansoori G.A., J. Chem. Eng. Data, 1998, 43, 719. 15. Eliassi A., Modarress H., Mansoori G.A., Measurement of activity of water in aque- ous poly(ethylene glycol) solutions (effect of excess volume on the Flory-Huggins χ- parameter). J. Chem. Eng. Data., 1999, (to appear). 16. Colin A.C., Cancho S.M., Rubio R.G., Compostizo A., Macromolecules, 1997, 30, 3389. 17. Lydersen A.L. Estimation of Critical Properties of Organic Compounds. Univ. Wis- consin Coll. Eng. Exp. Stn. Rep. 3, Madison, Wis., April, 1955. 18. Bondi A. Physical Properties of Molecular Crystals, Liquids and Glasses. John Wiley Sons, Inc., 1973. 19. Newing M.J., J. Chem. Soc. Farad. Trans., 1950, 46, 613. 20. Bawn E.H., Freeman R.F.J., Kamaliddin A.R., J. Chem. Soc. Farad. Trans., 1950, 46, 677. Покращення на основі теорії збурень теорії Флорі-Хаггінса для полімерних розчинів Г.А.Мансурі Ілінойський університет Чикаго, Чикаго, США Отримано 11 листопада 2004 р. Представлено покращення теорії полімерних розчинів Флорі-Хаг- гінса на основі теорії збурень. Запропоноване рівняння збурення використовує результати Тукур та ін. [J. Chem. Phys. 110 (7), 3463, 1999] для бінарної суміші твердих сфер для безмежно великого співвідношення розмірів. Отримані рівняння теорії збурень викорис- товуються для передбачення властивостей трьох різних полімер- ів з різною молекулярною вагою і у різних розчинниках. Порівн- яння отриманих результатів я результатами теорії Флорі-Хаггінса і експериментальними даними показує, що запропонований метод збурень суттєво покращує розрахунок властивостей полімерних розчинів, особливо у випадку великих співвідношень розмірів полімера і розчинника. Ключові слова: теорія збурень, теорія Флорі-Хаггінса, рівняння твердих сфер PACS: 61.25.Hq, 64, 64.10.+h, 64.60.-I, 65 396