Polaron in a quasi 1D cylindrical quantum wire
Polaron states in a quasi 1D cylindrical quantum wire with a parabolic confinement potential are investigated applying the Feynman variational principle. The effect of the wire radius on the polaron ground state energy level, the mass and the Frohlich electron-phonon-coupling constant are obtained...
Gespeichert in:
Datum: | 2005 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2005
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/119745 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Polaron in a quasi 1D cylindrical quantum wire / L.C. Fai, V. Teboul, A. Monteil, S. Maabou, I. Nsangou // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 639–650. — Бібліогр.: 54 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119745 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1197452017-06-09T03:04:55Z Polaron in a quasi 1D cylindrical quantum wire Fai, L.C. Teboul, V. Monteil, A. Maabou, S. Nsangou, I. Polaron states in a quasi 1D cylindrical quantum wire with a parabolic confinement potential are investigated applying the Feynman variational principle. The effect of the wire radius on the polaron ground state energy level, the mass and the Frohlich electron-phonon-coupling constant are obtained for the case of a quasi 1D cylindrical quantum wire. The effect of anisotropy of the structure on the polaron ground state energy level and the mass are also investigated. It is observed that as the wire radius tends to zero, the polaron mass and energy diverge logarithmically. The polaron mass and energy differ from the canonical strong-coupling behavior by the Frohlich electron-phonon coupling constant and the radius of the quasi 1D cylindrical quantum wire that are expressed through a logarithmic function. Moreover, it is observed that the polaron energy and mass for strong coupling for the case of the quasi 1D cylindrical quantum wire are greater than those for bulk crystals. It is also observed that the anisotropy of the structure considerably affects both the polaron ground state energy level and the mass. It is found that as the radius of the cylindrical wire reduces, the regimes of the weak and intermediate coupling polaron shorten while the region of the strong coupling polaron broadens and extends into those of the weak and intermediate ones. За допомогою варіаційного принципу Фейнмана вивчаються стани полярона в квазіодновимірному циліндричному квантовому дроті з параболічним обмеженим потенціалом. Досліджується вплив радіуса дроту на енергетичний рівень основного стану полярона, масу і електрон-фонон постійну зв’язку Фрьоліха. Також вивчається ефект анізотропії структури на енергетичний рівень основного стану полярона і його масу. Виявлено, що якщо радіус дроту прямує до нуля, маса і енергія полярона розбігаються логарифмічно. Маса і енергія полярона відрізняються від канонічної поведінки сильного зв’язку на електрон-фонон постійну зв’язку Фрьоліха і на радіус квазіодновимірного циліндричного квантового дроту, які виражаються через логарифмічну функцію. Більше того, спостережено, що енергія та маса полярона для випадку квазіодновимірного циліндричного квантового дроту є більшими, ніж для випадку об’ємних кристалів. Також виявлено, що анізотропія структури сильно впливає на енергетичний рівень основного стану полярона та його масу. Знайдено, що якщо радіус циліндричного дроту зменшується, режими слабкого та середнього зв’язку полярона скорочуються, тоді як область сильного зв’язку полярона розширюється. Отримано аналітичні вирази для енергетичного рівня основного стану полярона і для його маси для випадку сильного зв’язку поляронів. 2005 Article Polaron in a quasi 1D cylindrical quantum wire / L.C. Fai, V. Teboul, A. Monteil, S. Maabou, I. Nsangou // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 639–650. — Бібліогр.: 54 назв. — англ. 1607-324X PACS: 78.67.-n, 78.67.Hc, 71.38.-k DOI:10.5488/CMP.8.3.639 http://dspace.nbuv.gov.ua/handle/123456789/119745 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Polaron states in a quasi 1D cylindrical quantum wire with a parabolic confinement potential are investigated applying the Feynman variational principle.
The effect of the wire radius on the polaron ground state energy level,
the mass and the Frohlich electron-phonon-coupling constant are obtained for the case of a quasi 1D cylindrical quantum wire. The effect of anisotropy
of the structure on the polaron ground state energy level and the mass are
also investigated.
It is observed that as the wire radius tends to zero, the polaron mass and
energy diverge logarithmically. The polaron mass and energy differ from the
canonical strong-coupling behavior by the Frohlich electron-phonon coupling constant and the radius of the quasi 1D cylindrical quantum wire that
are expressed through a logarithmic function. Moreover, it is observed that
the polaron energy and mass for strong coupling for the case of the quasi
1D cylindrical quantum wire are greater than those for bulk crystals. It is
also observed that the anisotropy of the structure considerably affects both
the polaron ground state energy level and the mass. It is found that as the
radius of the cylindrical wire reduces, the regimes of the weak and intermediate
coupling polaron shorten while the region of the strong coupling
polaron broadens and extends into those of the weak and intermediate
ones. |
format |
Article |
author |
Fai, L.C. Teboul, V. Monteil, A. Maabou, S. Nsangou, I. |
spellingShingle |
Fai, L.C. Teboul, V. Monteil, A. Maabou, S. Nsangou, I. Polaron in a quasi 1D cylindrical quantum wire Condensed Matter Physics |
author_facet |
Fai, L.C. Teboul, V. Monteil, A. Maabou, S. Nsangou, I. |
author_sort |
Fai, L.C. |
title |
Polaron in a quasi 1D cylindrical quantum wire |
title_short |
Polaron in a quasi 1D cylindrical quantum wire |
title_full |
Polaron in a quasi 1D cylindrical quantum wire |
title_fullStr |
Polaron in a quasi 1D cylindrical quantum wire |
title_full_unstemmed |
Polaron in a quasi 1D cylindrical quantum wire |
title_sort |
polaron in a quasi 1d cylindrical quantum wire |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2005 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119745 |
citation_txt |
Polaron in a quasi 1D cylindrical quantum wire / L.C. Fai, V. Teboul, A. Monteil, S. Maabou, I. Nsangou // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 639–650. — Бібліогр.: 54 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT failc polaroninaquasi1dcylindricalquantumwire AT teboulv polaroninaquasi1dcylindricalquantumwire AT monteila polaroninaquasi1dcylindricalquantumwire AT maabous polaroninaquasi1dcylindricalquantumwire AT nsangoui polaroninaquasi1dcylindricalquantumwire |
first_indexed |
2025-07-08T16:31:29Z |
last_indexed |
2025-07-08T16:31:29Z |
_version_ |
1837097067899518976 |
fulltext |
Condensed Matter Physics, 2005, Vol. 8, No. 3(43), pp. 639–650
Polaron in a quasi 1D cylindrical
quantum wire
L.C.Fai 1 , V.Teboul 2 , A.Monteil 2 , S.Maabou 2 , I.Nsangou 1
1 Department of Physics, Faculty of Science,
University of Dschang, Cameroon
2 Laboratoire POMA, UMR CNRS 6136,
Université d’Angers,
2 Bd Lavoisier, 49045 Angers, France
Received March 30, 2004
Polaron states in a quasi 1D cylindrical quantum wire with a parabolic con-
finement potential are investigated applying the Feynman variational prin-
ciple. The effect of the wire radius on the polaron ground state energy level,
the mass and the Fröhlich electron-phonon-coupling constant are obtained
for the case of a quasi 1D cylindrical quantum wire. The effect of anisotropy
of the structure on the polaron ground state energy level and the mass are
also investigated.
It is observed that as the wire radius tends to zero, the polaron mass and
energy diverge logarithmically. The polaron mass and energy differ from the
canonical strong-coupling behavior by the Fröhlich electron-phonon cou-
pling constant and the radius of the quasi 1D cylindrical quantum wire that
are expressed through a logarithmic function. Moreover, it is observed that
the polaron energy and mass for strong coupling for the case of the quasi
1D cylindrical quantum wire are greater than those for bulk crystals. It is
also observed that the anisotropy of the structure considerably affects both
the polaron ground state energy level and the mass. It is found that as the
radius of the cylindrical wire reduces, the regimes of the weak and inter-
mediate coupling polaron shorten while the region of the strong coupling
polaron broadens and extends into those of the weak and intermediate
ones.
Analytic expressions for the polaron ground state energy level and mass
are derived for the case of strong coupling polarons.
Key words: polaron, polaron energy, polaron mass, parabolic
confinement, Fröhlich electron-phonon coupling constant, quantum wire
PACS: 78.67.-n, 78.67.Hc, 71.38.-k
c© L.C.Fai, V.Teboul, A.Monteil, S.Maabou, I.Nsangou 639
L.C.Fai et al.
1. Introduction
Recent developments in quasi 2D, 1D and 0D cylindrical quantum wire fabrica-
tion and in the fabrication of new electronic devices have stimulated the theoreti-
cians’ interest in formulating the models describing physical phenomena associated
with cylindrical quantum wires [1–14]. Since the majority of nano-structures are
ionic crystals and polar materials, polaronic effects may strongly effect their phys-
ical properties. The present paper investigates the effect of the wire radius on the
polaron ground state energy level, the effective mass and the Fröhlich electron-
phonon-coupling constant for the case of a quasi 1D cylindrical quantum wire. In
the cylindrical quantum wire configuration, the ultimate confinement effects quan-
tize the carrier motion in the directions transverse to its length. Polaron energy
is evaluated in [15–17] using perturbation theory, in [18] using the weak coupling
approximation, in [19] using the dielectric continuum model and in [20] using the
Feynman variational principle.
Landau was the first to predict the polaron concept [21]. It is studied in detail
in [21–27].
A polaron is a quasi particle that arises as a result of a conduction electron
(or hole) together with its self-induced polarization in an ionic crystal or in a po-
lar semiconductor [28]. To classify polarons, the Fröhlich electron-phonon coupling
constant value α is a weak-coupling if α < 1, a strong-coupling if α > 7 and an
intermediate-coupling between these ranges. The majority of crystals are weak or
intermediate-coupling polarons. Strong coupling is not attained even in strong ionic
crystals such as alkaline halides. The polaron character is well pronounced only for
strong coupling [29]. In nano-structures made of ionic crystals and polar materi-
als the strong coupling can be realized at smaller α when the parabolic electronic
confinement is introduced [30–34].
For cylindrical quantum wires it is possible to reduce the lower bound of the
electron-phonon coupling constant’s threshold value to within weak- or intermediate-
coupling range. Quasi 1D cylindrical quantum wires are of interest as structures
with maximal polaron effect. Here there exists at least one transport direction. It is
obvious that these structures are quit promising in observing the strong coupling.
When investigating the polaron problem in cylindrical quantum wires, it is necessary
to consider both the electron and the phonon confinement. The electron confinement
is described in [1,30–34] by means of a parabolic potential.
The investigation of the polaron states in a quasi-1D cylindrical quantum wire
using Feynman variational principle results in the upper bound polaron ground state
energy for arbitrary values of the Fröhlich electron-phonon coupling constant. Elec-
tron confinement is selected in the form of transverse parabolic potential since there
are no rigid interface boundaries. Then we examine electron interaction only with
3D longitudinal polar optical phonons (3D-phonon approximation). For rigid inter-
face boundaries, interface-like phonon modes are localized at the neighbourhood of a
sharp boundary. There is also quantisation of bulk phonons. For the parabolic poten-
tial, interface-like phonon modes are rather smoothly distributed in space. For this
640
Polaron in a quasi 1D cylindrical quantum wire
we do the 3D-phonon approximation. Consequently, interface phonons may not be
considered. This approach seems to be adequate since integral polaron effects result
from the summation over all phonon spectra. In [34–37] interface-type longitudinal
polar optical phonons have no contribution to polaron effects. The contribution of
the interface-type phonons to the polaron energy is very much smaller than the con-
tribution of the bulk-type phonon [19]. Bulk-type phonons play the dominant role
in the polaron energy shift [38–47].
This work paves the way for investigating strong-coupling polarons in strong
polar crystals. Thus we examine the polaron problem in the quasi 1D cylindrical
quantum wire within the framework of the strong coupling theory. The model with
parabolic confinement is preferable as it examines polaron states covering all values
of Fröhlich electron-phonon coupling constant. The parabolic confinement potential
is also introduced for technological reasons. At small values of the radius of the
quantum wire the parabolic confinement potential can be regarded as a model for
the real potential [48].
2. Feynman variational principle
The Feynman variational principle is one of the most effective methods when in-
vestigating the polaron problem for arbitrary values of the electron-phonon coupling
constant, α , and considers the exact and the model system. The action functional
of the exact system is defined as:
S [~r] =
∫
Ldt
and that of the model system is defined as:
S0 [~r] =
∫
L0dt,
where ~r is the radius vector, t is the time, L and L0 are the Langrangians of the
exact and model systems respectively.
The exact and the model action functionals are obtained as a result of the eli-
mination of the phonon coordinates and the coordinates of the “fictitious” particles
respectively. The statistical sum of the exact system is defined by
Z = Sp
∫
D~r exp {S [~r]} (2.1)
and that of the model system is defined by
Z0 = Sp
∫
D~r exp {S0 [~r]}. (2.2)
Here D~r denotes path integration and Sp the spur.
641
L.C.Fai et al.
In our evaluations, the statistical sum for the exact system is defined as Z̃ :
Z̃ = Z0 〈exp {S [~r] − S0 [~r]}〉 . (2.3)
The angle brackets in (2.3) denote the averaging over electron paths and are defined
as follows:
〈F [~r]〉 =
Sp
∫
D~rF [~r] exp {S0}
Sp
∫
D~r exp {S0}
.
The basis of Feynman variational method is the Jensen-Feynman inequality [28]:
〈exp (S [~r] − So [~r])〉 > exp 〈S [~r] − So [~r]〉 . (2.4)
The Feynman’s statistical sum ZF is evaluated using (2.3) and (2.4):
ln Z̃ > ln ZF ≡ ln Zo − 〈S [~r] − So [~r]〉 . (2.5)
We consider the total momentum ~p of the polaron to be the only continuous
quantum number. The dependence of the energy on the momentum (for the case of
an isotropic crystal) has the form:
E = E0 (v) + p2E2 (v) + p4E4 (v) + · · · . (2.6)
Here the quantities E0, E2, E4, · · · , are coefficients of expansion of (2.6) and v is
the totality of discrete quantum numbers of the system.
We evaluate the statistical sum for the system using (2.1) and limit ourselves only
to the first two terms of the expansion as higher order terms for low temperatures
are exponentially small (in the statistical sum expression) compared to the first two
terms. If the polaron effective mass is defined by M = 1/2E2 then it follows that
ln Z = ln
(
V
(2π ~)3
(
2π me
λ
)
3
2
)
− λE0 +
3
2
ln
(
M
me
)
, λ ≡ 1
T
. (2.7)
Here T is the absolute temperature. Comparing (2.5) and (2.7) we can obtain the
expressions for the Feynman variational polaron energy E and effective mass M .
The polaron ground state energy is obtained as the coefficient of λ in (2.7) and the
polaron effective mass from the term independent of λ . We consider the case of low
temperatures T → 0 ( λ → ∞) .
3. Feynman polaron in a quasi 1D cylindrical quantum wire
Consider the motion of an electron in a quasi 1D cylindrical quantum wire that
has a transverse parabolic confinement potential. The electron motion in the direc-
tion of the axis of the cylindrical quantum wire (OZ-axis) is free. The Hamiltonian
of the polaron problem has the form:
Ĥ = Ĥe + Ĥph + Ĥe−ph , (3.1)
642
Polaron in a quasi 1D cylindrical quantum wire
where Ĥe is the electron Hamiltonian in cylindrical coordinates:
Ĥe =
P̂ 2
⊥
2m⊥
+
P̂ 2
||
2m||
+
m⊥Ω2
2
ρ2.
Here ρ2 = x2+y2 ; P̂⊥,m⊥ and P̂||,m|| components of the operator of the momentum
and electron band mass in the transversal and longitudinal directions respectively;
Ω is the frequency characterizing the parabolic confinement potential; and
Ĥph =
∑
~q
~ω~q b̂
+
~q b̂~q ,
Ĥe−ph =
∑
~q
[
γ~q b̂~qe
i~q~r + γ∗
~q b̂
+
~q e−i~q~r
] (3.2)
are respectively the phonon contribution and electron-phonon interaction Hamilto-
nians. Here γ~q is the amplitude of the electron-phonon interaction and ω~q is the
phonon frequency numbered by the wave vector ~q :
γ~q =
[
απ
V
(
~ωo
q
)2
Rp
]
1
2
, Rp =
(
~
2meωo
)
1
2
, q2 = q2
⊥ + q2
|| ,
ω0 is the dispersionless phonon frequency and Rp is the polaron radius. b̂+
~q and b̂~q
are the creation and annihilation operators respectively.
Considering the Hamiltonian (3.1), the model Lagrangian L0 for the system
(considering the ground state) is selected in the one – oscillatory approximation:
L0 = −m⊥ρ̇2
2~2
− m||ż
2
2~2
− m⊥Ω2
2
ρ2− M⊥Ṙ2
2~2
− M||Ż
2
2~2
− κ⊥
2
(
~R − ~ρ
)2
− κ||
2
(
~Z ′ − ~Z
)2
,
(3.3)
where R and Z are coordinates of the model particle; ρ and z are coordinates of
the electron, and m⊥ and m|| are the components of the electron masses in the oxy-
plane and in the oz-direction respectively. The quantities M⊥, M||, κ⊥ and κ|| serve
as variational parameters, while ωf is the elastic coupling frequency.
From the Lagrangian in (3.3), the transverse and longitudinal equations of motion
for the model system are independent. The model Lagrangian in (3.3) simulates the
interacting electron-phonon system. Considering the form of the model Lagrangian,
the equations of motion along the transversal and longitudinal directions are mutu-
ally independent. From the equation of motion considering the transversal direction,
the following eigen frequencies are obtained:
ω2
⊥1,2 =
1
2
(
κ⊥
µ⊥
+ Ω2
)
±1
2
[
(
κ⊥
µ⊥
+ Ω2
)2
− 4κ⊥Ω2
M⊥
]
1
2
,
1
µ⊥
=
1
m⊥
+
1
M⊥
. (3.4)
In order to diagonalize the Lagrangian (3.3) we do the linear transformation of
the variables R and ρ using the modes in (3.4):
{
~ρ = c1
~ξ1 (ω⊥1) + c2F2 (ω⊥2) ~ξ2 (ω⊥2),
~R = c1F1 (ω⊥1) ~ξ1 (ω⊥1) + c2
~ξ2 (ω⊥2).
643
L.C.Fai et al.
Here
F1 (ω⊥1) =
κ⊥
−M⊥ω2
⊥1 + κ⊥
, F2 (ω⊥2) = −M⊥
m⊥
F1 (ω⊥1) ,
c2
1 =
1
m⊥ + M⊥F 2
1
, c2
2 =
m⊥
M⊥
c2
1 .
Also
ρ1 = Z − z, ρ2 =
m||z+M||Z
M
, M = m|| + M||, ν2 = u2ω||f
u2 =
M||
m||
, µ|| =
m||M||
M
, a1 + a2 = 1, a1 = 1/u2 .
(3.5)
It may be seen from this transformation that on the axis of the wire there is one
free and one oscillatory polaron motion. Considering the transformation of variables
and (2.1), (2.2), (2.4) and (3.3) to (3.5) we obtain the expression:
〈
S − S⊥0 − S||0
〉
= 2 ln
(
2 sinh
λ~ω⊥1
2
)
+ 2 ln
(
2 sinh
λ~ω⊥2
2
)
+
~κ⊥
2
∫ λ
0
〈
ρ2
〉
dτ +
~κ||
2
∫ λ
0
〈
z2
〉
dτ −
〈
Φω⊥f
〉
−
〈
Φω||f
〉
+ 〈Φ〉 .
Here
〈
Φω⊥f
〉
=
~κ2
⊥
4M⊥ω⊥f
∫ λ
0
∫ λ
0
〈ρτρσ〉F (ω⊥f ) dτdσ,
〈
Φω⊥f
〉
=
~κ2
||
4M||ω||f
∫ λ
0
∫ λ
0
〈zτzσ〉F
(
ω||f
)
dτdσ,
〈Φ〉 = αλ
∞
∫
0
F (A⊥, A||)e
−τdτ
and
F (A⊥, A||) = β
√
1
π
1
(
∣
∣ε A|| − A⊥
∣
∣
)1/2
{
Ar sinh (A − 1)1/2 , A > 1,
arcsin (1 − A)1/2 , A < 1,
A = ε
A||
A⊥
, β =
√
ε
1 + ε
, ε =
m⊥
m||
,
A⊥ =
2
∑
j=1
aj
ω⊥j
(
1 − e−ω⊥jτ
)
, a1 =
ω2
1 − ω2
f
ω2
1 − ω2
2
, a2 =
ω2
f − ω2
2
ω2
1 − ω2
2
,
A|| =
a2
ν
(
1 − e−ντ
)
+ a1τ,
644
Polaron in a quasi 1D cylindrical quantum wire
F (ω) =
cosh
(
~ω
[
|τ − σ| − λ
2
])
sinh (λ~ω/2)
.
We evaluate 〈ρ2
τ 〉, 〈ρτρσ〉 and 〈z2
τ 〉, 〈zτzσ〉 respectively using the productive func-
tions
Ψ⊥ (ς, η) ≡ exp {−Σ − Ξ} ,
where
Σ =
~c2
1q
2
⊥
4ω⊥1
[
(
ς2 + η2
)
coth
(
λ~ω⊥1
2
)
− 2ςηF (ω⊥1)
]
,
Ξ =
~c2
2F
2
2 q2
⊥
4ω⊥2
[
(
ς2 + η2
)
coth
(
λ~ω⊥2
2
)
− 2ςηF (ω⊥2)
]
and
Ψ|| (ς, η) ≡ exp {−Λ − Υ} ,
where
Λ =
~c2
1q
2
⊥
4ω⊥1
[
(
ς2 + η2
)
coth
(
λ~ω⊥1
2
)
− 2ςηF (ω⊥1)
]
,
Υ =
~c2
2F
2
2 q2
⊥
4ω⊥2
[
(
ς2 + η2
)
coth
(
λ~ω⊥2
2
)
− 2ςηF (ω⊥2)
]
.
From considering (2.5) and (2.7), for low temperatures T → 0 ( λ → ∞) and
from the fact that ς = η = ±1 we obtain the polaron energy and mass. In further
evaluations of the polaron energy and mass, the Feynman’s units [25] are used: ~ω0
for energy and Rp for length. The Feynman polaron dimensionless variational energy
is found to be:
E =
ν
4
(
1 − 1
u
)2
+ Ω +
(Ω − ω⊥1)
2 (Ω − ω⊥2)
2
Ω2 (ω⊥1 + ω⊥2)
− α
∞
∫
0
F (A⊥, A||)e
−τdτ (3.6)
and the dimensionless variational polaron mass may be conveniently evaluated through
the expression
M = u2 +
(ω2
⊥1 − Ω2) (Ω2 − ω2
⊥2)
ω2
⊥1ω
2
⊥2
− 1. (3.7)
In (3.6), ε is the parameter characterizing the anisotropy of the structure bulk.
The polaron energy is found by minimizing the polaron variational energy in (3.6)
and the mass by substituting in the expression of the mass in (3.7) the threshold
values of ν , u ,ω⊥1 and ω⊥2 for which the energy is minimum. The numerical results
are shown in the figures 1–4 below. In the figures 1 and 3 the absolute value of the
polaron energy is considered for convenience to aid easy analysis.
From expressions (3.6) and (3.7) the analytic dimensionless expressions for the
polaron energy and effective mass for the strong-coupling polarons are obtained
respectively as:
E = −4α2β2
επ
ln2
(
ε
√
π
2eβαRf (Q)
)
− 2
R2
645
L.C.Fai et al.
Figure 1. Polaron energy versus
Fröhlich constant for different radii.
Figure 2. Polaron mass versus Fröhlich
constant for different radii.
and
M =
256α4β4
ε2π2
ln2
(
ε
√
π
2eβαRf (Q)
)
.
Here
f (Q) = − ln [−Q ln [−Q ln . . . ln Q]] , Q =
2eβRα
ε
√
π
,
e = 2.718281828
and
R =
(
2ω0
Ω
)1/2
is the radius of the quasi 1D cylindrical quantum wire.
Rigorous weak-coupling expansion for the polaron ground state energy and ef-
fective mass yield [25]:
E = −α − 0.01592α2 − · · · , M = 1 +
α
6
+ 0.02363α2 + · · · .
The expansion for the strong-coupling polaron yields [26]:
E = −0.109α2, M = 0.02α4.
Polaron excitation in [49,50] for the strong-coupling polaron in a 3D structure
yields the energy:
E = −α2
9π
.
Since
ln2
(
ε
√
π
2eαβRf (Q)
)
> 1,
646
Polaron in a quasi 1D cylindrical quantum wire
Figure 3. Polaron energy versus
Fröhlich constant for different param-
eters of the anisotropy.
Figure 4. Polaron mass versus Fröhlich
constant for different parameters of the
anisotropy.
then from the above results, the polaron ground state energy and mass in a quasi 1D
cylindrical quantum wire are greater than those in 3D structures. It is also seen that
the decrease in the radius of the structure leads to the increase in polaron ground
state energy and in the effective mass. It follows that the confinement leads to an
enhancement of the electron-phonon interaction.
4. Conclusions
Figures 1 and 2 are respectively the plots of the polaron energy and mass versus
Fröhlich electron-phonon coupling constant for different structure radii. It is ob-
served that as the wire radius tends to zero, the polaron mass and energy diverge
logarithmically and the region of strong-coupling polaron is shifted to those of weak-
and intermediate-coupling in which the energy, E = const × α. This shows that as
R → 0 the weak and intermediate regions vanish. The behaviors in figures 1 and 2
differ from those in [51–54] only in their logarithmic dependence. Our results confi-
rm those in [33,48,54] in that the polaron energy and mass increase with a decrease
of a radius of the cylindrical quantum wire. It follows that the confinement leads
to the enhancement of the electron-phonon interaction. This is also confirmed by
[23,25,27,41]. The difference in these results and those in [53] is that the polaron
energy and mass pass through a maximum (in their plot against the coupling con-
stant) and then decreases to bulk polaron values. For our case due to the strong
confinement, the regions of weak and intermediate polarons disappear. The results
in [17] show that the polaron energy and mass decrease through a minimum in
their plot against the radius and then increase to a constant value. In our opinion
this minimum should not be expected. This may imply that the bulk optical po-
laron is bound to a Coulomb center. Therefore the pertubative method may not be
appropriate for the treatment of strong coupling polarons.
647
L.C.Fai et al.
Our results show that the polaron mass and energy differ from the canonical
strong-coupling behavior by the Fröhlich electron-phonon coupling constant and
the radius of the quasi 1D cylindrical quantum wire that are expressed through a
logarithmic function. It is observed that the polaron energy and mass for strong cou-
pling for the case of the quasi 1D cylindrical quantum wire are greater than those
for bulk structures. This is in agreement with [34]. From the analytic expressions of
the energy and mass, since
ln2
(
ε
√
π
2eαβRf (Q)
)
> 1
it follows that the polaron ground state energy and mass in a quasi 1D cylindrical
quantum wire are greater than those in 3D structures. If we compare our results with
those derived from the strong coupling theory we see that ours yield significantly
improved energy upper bounds.
It is also observed that the decrease of the radius of the structure favors strong-
coupling polaron for smaller Fröhlich electron-phonon coupling constant. Thus to
enhance a strong-coupling polaron it is sufficient to reduce the radius of the struc-
ture. From our results it is seen that the parameters α and R control the polaron
state in an interrelated manner. They vary in an interrelated manner in favor of a
strong coupling polaron. It is observed that the Fröhlich electron-phonon-coupling
constant for strong-coupling in the case of the quantum wire is found in the weak
and intermediate-coupling range.
Figures 3 and 4, show the effect of the anisotropy on the polaron energy and mass
respectively. It is also observed that the anisotropy of the structure considerably
affects the polaron ground state energy level and the mass.
References
1. Hudgins R.R., Durourd P., Tenenbaum J.M., Jarrold M.F., Phys. Rev. Lett., 1997,
78, 4213.
2. Zhao Q.X., Magnea N., Pautrat J.L., Phys. Rev. B, 1995, 52, 16612.
3. Lucsak F., Brosens F., Devreese J.T., Phys. Rev. B, 1995, 52, No. 17, 12743.
4. Nagamune Y., Arakawa Y., Tsukamoto S., Nishioka M., Sasaki S., Mikra N., Phys.
Rev. Lett., 1993, 69, 2963.
5. Osorio A.P., Phys. Rev. B, 1995, 52, No. 7, 4662.
6. Osorio F.A.P., Degani M.H., Hipolito’ O., Phys. Rev. B, 1998, 37, No. 3, 1402.
7. Dneprovskii V., Gushina N., Pavlov O., Poborchii V., Salamatina I., Zhukov E., Phys.
Lett. A, 1995, 204, 59.
8. Brandbyge M., Schiötz J., Sörensen M.R., Stoltze P., Jacobsen K.W., Nörskov J.K.,
Olesen L., Laegsgaard E., Stensgaard I., Besenbacher F., Phys. Rev. B, 1995, 52, 8499.
9. Temkin H., Dolan G.J., Parish M.B., Chu S.N.G., Appl. Phys. Lett., 1997, 40, 413.
10. Tonucci R.C., Justus B.L., Campillo A.J., Ford C.E., Science, 1992, 258, 783.
11. Watt M., Sotomayer-Torres C.M., Arnot H.E.G., Beaumont S.P., Semicond. Sci. Tech-
nol., 1990, 5, 285.
12. Duan J., Bishops G.G., Gillman E.S., Chern G., Safron S.A., Skofronick J.G., Vac.
Sci. Technol. A, 1992, 10, 1999.
648
Polaron in a quasi 1D cylindrical quantum wire
13. Dominguez-Adame F., Gomez I., Orellana P.A., Ladron de Guevana M.L., Micoelec-
tronics Journal, 2004, 35, 87.
14. Orellana P.A., Dominguez-Adame F., Gomez I., Ladron de Guevana M.L., Phys.
Rev. B, 2003, 67, 085321.
15. Pokatilov E.P., Klimin S.N., Balaban S.N., Fomin V.M., Phys. Stat. Sol. B, 1995, 189,
433.
16. Pokatilov E.P., Fomin V.M., Balaban S.N., Klimin S.N., Devreese J.T., Phys Stat.
Sol. B, 1998, 210, 879.
17. Erçelebi A., Senger R.T., Phys. Rev. B, 1996, 53, No. 16, 11008.
18. Klimin S.N., Pokatilov E.P., Fomin V.M., Phys Stat. Sol. B, 1994, 184, 373.
19. Kazunori Oshiro, Koji Akai, Mitsuru Matsuura, Phys Rev. B, 1998, 58, No. 12, 7986.
20. Senger R.T., Erçelebi A., J. Phys.: Cond. Matt., 1997, 9, 5067.
21. Landua L.D., Phys. Sowjetunion Z., 1993, 3, 664.
22. Pekar S.I., Zh. Eksp. Teor. Fiz., 1946, 16, 335.
23. Feynman R.P., Phys. Rev., 1955, 97, 660.
24. Pokatilov E.P., Fomin V.M., Beril S.I. Vibrational Excitations, Polarons and excitons
in Multilayer Structures. Stiintsa, Kishinev, 1990.
25. Devreese J.T. Encyclopedia of Applied Physics, 14, 383. VCH Publishers, 1996.
26. Alexandrov A.S. Sir N. Mott. World Scientific Publishing Co Pte Ltd, p. 9, 1995.
27. Fröhlich H., Adv. Phys., 1954, 3, 325.
28. Devreese J.T. – In: Proc. of the International School of physics “Enrico Fermi” Course
CXXXVI. G.Iodonisi, J.R. Schrieffer and M.L. Chiotalo (Eds.). IOSS Press, Amster-
dam, 1998.
29. Pekar S.I. Research on Electron Theory In Crystals. U.S. ACE, Washington DC, 1963.
30. Pokatilov E.P., Fomin V.M., Klimin S.N., Balaban S.N., Fai L.C., Devreese J.T.,
Superlattices Microstructures, 1998, 23, 331.
31. Pokatilov E.P., Fomin V.M., Klimin S.N., Balaban S.N., Fai L.C. – In: 15th General
conf. of the Condensed Matter Division of the EPS. Baveno-Stresa, Italy, 22–25 April,
1996. Europhysics Conf. Abstracts, vol. 20a. EPS, Pavia, 48, 1996.
32. Pokatilov E.P., Fomin V.M., Klimin S.N., Devreese J.T., Balaban S.N., Fai L.C. – In:
Proc. 9th Int. Conf. on the Superlattices, Microstructures and Microdevices. Liege,
14–19, July, 1996. Abstract Workbook. ThP-77, 1996.
33. Fai L.C., Teboul V., Monteil A., Nsangou I., Maabou S., Condens. Matter Phys., 2004,
7, No. 1, 37.
34. Fai L.C., Nsangou I., Tchitnga R., Tchassem D. – In: ISSP International Workshop.
Kashiwa-Japan, August 13–21, 2003. Abstract Workbook. 19P–13, 2003.
35. Devreese J.T., Fomin V.M., Gladilin V.N., Imanaka Y., Miura, Journal of Crystal
Growth, 2000, 214/215, 465.
36. Pan J.S., Pan H.B., Phys. Stat. Sol., 1988, 148, 129.
37. Marini J.C., Srebe B., Kartheuser E., Phys. Rev. B, 1994, 50, 14302.
38. Klimin S.N., Pokatilov E.P., Fomin V.M., Phys. Stat. Sol. B, 1994, 184, 373.
39. Tanatar B., J. Phys. Condens. Matter, 1993, 5, 2203.
40. Degani M.H., Farias G.A., Phys. Rev. B, 1990, 42, 11950.
41. Constantinou N.C., Ridley B.K., J. Phys. Condens. Matter, 1989, 1, 2283.
42. Yildirim T., Erçelebi A., J. Phys. Condens. Matter, 1991, 3, 4357.
43. Yildirim T., Erçelebi A., J. Phys. Condens. Matter, 1991, 3, 1271.
44. Zhou H.Y., Gu S.W., Solid State Commun., 1994, 91, 725.
649
L.C.Fai et al.
45. Degani M.H., Hipolito O., Solid Sate Commun., 1998, 65, 1185.
46. Leburton J.P., J. Appl. Phys., 1984, 56, 2850.
47. Devreese J., Evrard R., Kartheuser E., Brosens F., Solid State Commun., 1982, 44,
1435.
48. Pokatilov E.P., Fomin V.M., Devreese J.T., Balaban S.N., Klimin S.N., Physica E,
1999, 4, 156.
49. Zhu K.D., Gu S.W., Phys. Letters A, 1992, 171, 113.
50. Haupt R., Wendler L., Ann. Phys. (USA), 1994, 233, 214.
51. Erçelebi A., Senger R.T., Solid State Commun., 19996, 97, No. 6, 509.
52. Erçelebi A., Senger R.T., Phys. Rev. B, 1996, 53, No. 16, 11008.
53. Senger R.T., Erçelebi A., J. Phys: Cond. Matt., 1997, 9, 5067.
54. Matos-Abiague A., Semicond. Sci. Technol., 2002, 17, 150.
Полярон у квазіодновимірному циліндричному
квантовому дроті
Л.Фаї 1 , В.Тебул 2 , А.Монтейл 2 , С.Маабу 2 , І.Нсангу 1
1 Факультет природничих наук,
Університет м. Джанг, Камерун
2 UMR CNRS 6136,
Університет м. Анже,
вул. Лавуаз’є, Анже 49045, Франція
Отримано 30 березня 2004 р.
За допомогою варіаційного принципу Фейнмана вивчаються стани
полярона в квазіодновимірному циліндричному квантовому дроті з
параболічним обмеженим потенціалом. Досліджується вплив радіу-
са дроту на енергетичний рівень основного стану полярона, масу і
електрон-фонон постійну зв’язку Фрьоліха. Також вивчається ефект
анізотропії структури на енергетичний рівень основного стану поля-
рона і його масу. Виявлено, що якщо радіус дроту прямує до нуля,
маса і енергія полярона розбігаються логарифмічно. Маса і енергія
полярона відрізняються від канонічної поведінки сильного зв’язку
на електрон-фонон постійну зв’язку Фрьоліха і на радіус квазіодно-
вимірного циліндричного квантового дроту, які виражаються через
логарифмічну функцію. Більше того, спостережено, що енергія та
маса полярона для випадку квазіодновимірного циліндричного кван-
то-вого дроту є більшими, ніж для випадку об’ємних кристалів. Також
виявлено, що анізотропія структури сильно впливає на енергетичний
рівень основного стану полярона та його масу. Знайдено, що якщо
радіус циліндричного дроту зменшується, режими слабкого та се-
реднього зв’язку полярона скорочуються, тоді як область сильного
зв’язку полярона розширюється. Отримано аналітичні вирази для
енергетичного рівня основного стану полярона і для його маси для
випадку сильного зв’язку поляронів.
Ключові слова: полярон, енергія полярона, маса полярона,
електрон-фонон постійна зв’язку Фрьоліха, квантовий дріт
PACS: 78.67.-n, 78.67.Hc, 71.38.-k
650
|