Electron structure of topologically disordered metals

Here two methods for calculating the density of states of electrons in conduction band of disordered metals are investigated. The first one is based on the usage of one-parameter trial electron wave function. The equation for density of states gotten within this method is more general as compared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
1. Verfasser: Yakibchuk, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2005
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119749
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Electron structure of topologically disordered metals / P. Yakibchuk // Condensed Matter Physics. — 2005. — Т. 8, № 3(43). — С. 537–546. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Here two methods for calculating the density of states of electrons in conduction band of disordered metals are investigated. The first one is based on the usage of one-parameter trial electron wave function. The equation for density of states gotten within this method is more general as compared to the results of perturbation theory. Electron-ion interaction is applied in the form of electron-ion structure factor, which makes it possible to use this method for a series of systems where potential form factor is not a small value and the perturbation theory fails. It also gives us well-known results of Relel-Schrodinger and Brilliuen-Vigner perturbation theory in case of small potential. Basically, the second approach is a common perturbation theory for pseudo-potential and Green’s function method. It considers the contributions up to the third order. The results of computation for density of states in some non-transition metals are presented. The deviation of density of states causing the appearance of pseudo-gap is clearly recognized.