Strong coupling Hartree-Fock approximation in the dynamical mean-field theory

In the limit of infinite spatial dimensions, a thermodynamically consistent theory, which is valid for arbitrary value of the Coulombic interaction ( U < ∞ ), is built for the Hubbard model when the total auxiliary single-site problem exactly splits into four subspaces with different “vacuum s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2001
1. Verfasser: Shvaika, A.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2001
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119753
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Strong coupling Hartree-Fock approximation in the dynamical mean-field theory / A.M. Shvaika // Condensed Matter Physics. — 2001. — Т. 4, № 1(25). — С. 85-92. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119753
record_format dspace
spelling irk-123456789-1197532017-06-09T03:03:02Z Strong coupling Hartree-Fock approximation in the dynamical mean-field theory Shvaika, A.M. In the limit of infinite spatial dimensions, a thermodynamically consistent theory, which is valid for arbitrary value of the Coulombic interaction ( U < ∞ ), is built for the Hubbard model when the total auxiliary single-site problem exactly splits into four subspaces with different “vacuum states”. Some analytical results are given for the Hartree-Fock approximation when the 4- pole structure for Green’s function is obtained: two poles describe contribution from the Fermi liquid component, which is ferromagnetic and dominant for small electron and hole concentrations (“overdoped case” of high- Tc ’s), whereas other two describe contribution from the non-Fermi liquid, which is antiferromagnetic and dominant close to half filling (“underdoped case”). Для моделі Хаббарда побудовано термодинамічно самоузгоджену теорію, яка застосовна для довільних значень кулонівської кореляції ( U < ∞ ) в границі безмежної розмірності простору, коли повна допоміжна задача точно розпадається на чотири підпростори з різними “вакуумними станами”. Наведено ряд аналітичних результатів для наближення Хартрі-Фока, коли отримується чотириполюсна структура для функцій Гріна: два полюси описують внески Фермі-рідинної компоненти, яка є феромагнітною і домінує при малих концентраціях електронів або дірок (“перелегований випадок” ВТНП), а інші два – внески від не-Фермі рідини, яка є антиферомагнітною і домінує поблизу половинного заповнення (“недолегований випадок”). 2001 Article Strong coupling Hartree-Fock approximation in the dynamical mean-field theory / A.M. Shvaika // Condensed Matter Physics. — 2001. — Т. 4, № 1(25). — С. 85-92. — Бібліогр.: 16 назв. — англ. 1607-324X PACS: 71.10.Fd, 71.15.Mb, 05.30.Fk, 71.27.+a DOI:10.5488/CMP.4.1.85 http://dspace.nbuv.gov.ua/handle/123456789/119753 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the limit of infinite spatial dimensions, a thermodynamically consistent theory, which is valid for arbitrary value of the Coulombic interaction ( U < ∞ ), is built for the Hubbard model when the total auxiliary single-site problem exactly splits into four subspaces with different “vacuum states”. Some analytical results are given for the Hartree-Fock approximation when the 4- pole structure for Green’s function is obtained: two poles describe contribution from the Fermi liquid component, which is ferromagnetic and dominant for small electron and hole concentrations (“overdoped case” of high- Tc ’s), whereas other two describe contribution from the non-Fermi liquid, which is antiferromagnetic and dominant close to half filling (“underdoped case”).
format Article
author Shvaika, A.M.
spellingShingle Shvaika, A.M.
Strong coupling Hartree-Fock approximation in the dynamical mean-field theory
Condensed Matter Physics
author_facet Shvaika, A.M.
author_sort Shvaika, A.M.
title Strong coupling Hartree-Fock approximation in the dynamical mean-field theory
title_short Strong coupling Hartree-Fock approximation in the dynamical mean-field theory
title_full Strong coupling Hartree-Fock approximation in the dynamical mean-field theory
title_fullStr Strong coupling Hartree-Fock approximation in the dynamical mean-field theory
title_full_unstemmed Strong coupling Hartree-Fock approximation in the dynamical mean-field theory
title_sort strong coupling hartree-fock approximation in the dynamical mean-field theory
publisher Інститут фізики конденсованих систем НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/119753
citation_txt Strong coupling Hartree-Fock approximation in the dynamical mean-field theory / A.M. Shvaika // Condensed Matter Physics. — 2001. — Т. 4, № 1(25). — С. 85-92. — Бібліогр.: 16 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT shvaikaam strongcouplinghartreefockapproximationinthedynamicalmeanfieldtheory
first_indexed 2025-07-08T16:32:21Z
last_indexed 2025-07-08T16:32:21Z
_version_ 1837097122615263232
fulltext Condensed Matter Physics, 2001, Vol. 4, No. 1(25), pp. 85–92 Strong coupling Hartree-Fock approximation in the dynamical mean-field theory A.M.Shvaika Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine Received August 23, 2000 In the limit of infinite spatial dimensions, a thermodynamically consistent theory, which is valid for arbitrary value of the Coulombic interaction ( U < ∞ ), is built for the Hubbard model when the total auxiliary single-site prob- lem exactly splits into four subspaces with different “vacuum states”. Some analytical results are given for the Hartree-Fock approximation when the 4- pole structure for Green’s function is obtained: two poles describe contribu- tion from the Fermi liquid component, which is ferromagnetic and dominant for small electron and hole concentrations (“overdoped case” of high- Tc ’s), whereas other two describe contribution from the non-Fermi liquid, which is antiferromagnetic and dominant close to half filling (“underdoped case”). Key words: dynamical mean-field theory, Hartree-Fock approximation, Hubbard model, (anti)ferromagnetism, strong coupling PACS: 71.10.Fd, 71.15.Mb, 05.30.Fk, 71.27.+a 1. Introduction In the last decade, essential achievements in the theory of strongly correlated electron systems are connected with the development of the dynamical mean-field theory (DMFT) proposed by Metzner and Vollhardt [1] for the Hubbard model (see also [2,3] and references therein). There are no restrictions on the U value within this theory and it turns out to be useful for intermediate coupling (U ∼ t) for which it ensures a correct description of the metal-insulator phase transition and determines the region of the Fermi-liquid behaviour of the electron subsystem. Moreover, some classes of binary-alloy-type models (e.g., the Falicov-Kimball model) can be studied almost analytically within DMFT [4]. But in the case of the Hubbard model, the treatment of the effective single impurity Anderson model is very complicated and mainly computer simulations are used, which calls for the development of analytical approaches [5]. c© A.M.Shvaika 85 A.M.Shvaika Such approaches can be built with a systematic perturbation expansion in terms of the electron hopping [6] using a diagrammatic technique for Hubbard operators [7,8]. One of them was proposed for the Hubbard (U = ∞ limit) and t − J models [9]. The lack of such an approach is connected with the concept of a “hierarchy” system for the Hubbard operators when the form of the diagrammatic series and the final results strongly depend on the system of the pairing priority for Hubbard operators. On the other hand, it is difficult to generalize it to the case of arbitrary U . In our previous paper [10] we developed, for the Hubbard-type models, a rigorous perturbation theory scheme in terms of electron hopping which is based on the Wick theorem for Hubbard operators [7,8], which is valid for arbitrary values of U (U < ∞) and which does not depend on the “hierarchy” system for X operators. In the limit of infinite spatial dimensions, this analytical scheme permits us to build a self-consistent Kadanoff-Baym type theory [11] for the Hubbard model and some analytical results are given for simple approximations. Here we shall consider possible magnetic orderings in the Hartree-Fock type approximation. 2. Perturbation theory in terms of electron hopping We consider the lattice electronic system described by the statistical operator: ρ̂ = e−βĤ0 σ̂(β), σ̂(β) = T exp   − β∫ 0 dτ β∫ 0 dτ ′ ∑ ijσ tσij(τ − τ ′)a†iσ(τ)ajσ(τ ′)    , (2.1) where Ĥ0 = ∑ i Ĥi is a sum of the single-site contributions, and for the Hubbard model we must put Hi = Uni↑ni↓ − µ(ni↑ + ni↓)− h(ni↑ − ni↓), tσij(τ − τ ′) = tijδ(τ − τ ′). (2.2) It is supposed that we know the eigenvalues and eigenstates of the zero-order Hamiltonian: Hi|i, p〉 = λp|i, p〉, and one can introduce Hubbard operators X̂pq i = |i, p〉〈i, q| in terms of which the zero-order Hamiltonian is diagonal H0 = ∑ i ∑ p λpX̂ pp i . (2.3) For the Hubbard model we have four states |i, p〉 = |i, ni↑, ni↓〉: |i, 0〉 = |i, 0, 0〉 (empty site), |i, 2〉 = |i, 1, 1〉 (double occupied site), |i, ↑〉 = |i, 1, 0〉 and |i, ↓〉 = |i, 0, 1〉 (sites with spin-up and spin-down electrons) with energies λ0 = 0, λ2 = U − 2µ, λ↓ = h − µ, and λ↑ = −h − µ. The connection between the electron operators and the Hubbard operators is the following: niσ = X22 i +Xσσ i ; aiσ = X0σ i + σX σ̄2 i . (2.4) The expression for 〈σ(β)〉0 is a series of terms that are products of the hopping integrals and averages of the electron creation and annihilation operators or Hubbard 86 Strong coupling Hartree-Fock approximation in the dynamical mean-field theory operators, that are calculated with the use of the corresponding Wick’s theorem [7,8], and can be written as [10]: 〈σ̂(β)〉0 = 〈 exp { − − 1 2 − 1 3 − . . . (2.5) − © − © − . . .− © − . . . }〉 0 , where arrows denote the zero-order Green’s functions gpq(ωn) = 1 iωn − λpq , (2.6) wavy lines denote hopping integrals and �, . . . stand for complicated “n vertices”. Each vertex (many-particle single-site Green’s function) is multiplied by a diagonal Hubbard operator denoted by a circle. 3. Irreducible many-particle Green’s functions For the Hubbard model, expressions for the two-vertex = ∑ p X̂pp i gσ(p)(ωn), (3.1) the four-vertex © = ∑ p X̂pp i gσ(p)(ωn)gσ(p)(ωn+m)Ũσσ̄(p)(ωn, ωl|ωm)gσ̄(p)(ωl)gσ̄(p)(ωl+m), (3.2) and for the vertices of higher order possess one significant feature [10]. They decom- pose into four terms with different diagonal Hubbard operators X pp, which project our single-site problem onto certain “vacuum” states (subspaces), and zero-order Green’s functions gσ(p)(ωn) = { gσ0(ωn) for p = 0, σ g2σ̄(ωn) for p = σ̄, 2 , (3.3) which describe all possible excitations and scattering processes around these “vac- uum” states. Here Ũσσ̄(p)(ωn, ωl|ωm) = { U ± U2g20(ωn+l+m) for p = 0, 2 U ± U2gσσ̄(ωn−l) for p = σ, σ̄ (3.4) is a renormalized Coulombic interaction in the subspaces. In diagrammatic nota- tions, expression (3.2) can be represented as = ± , (3.5) 87 A.M.Shvaika where dots denote the Coulombic correlation energy U and the dashed arrows denote bosonic zero-order Green’s functions: doublon g20(ωm) or magnon gσσ̄(ωm). The contributions to the six-vertex can be presented by the following diagrams: (3.6) where the first three diagrams contain the internal vertices of the same type as in equation (3.5). So, we can introduce primitive vertices , , by which one can construct all n vertices in the expansion (2.5).1 4. Dynamical mean-field theory Within the framework of the considered perturbation theory in terms of electron hopping a single-electron Green’s function can be presented in the form Gσ(ωn,k) = 1 Ξ−1 σ (ωn,k)− tk , (4.1) where we introduce an irreducible part Ξσ(ωn,k) of Green’s function which, in gen- eral, is not local. In the case of infinite dimensions d → ∞ one should scale the hopping integral according to tij → tij/ √ d in order to obtain finite density-of-states and it was shown by Metzner in his pioneer work [12] that in this limit the irreducible part becomes local Ξijσ(τ − τ ′) = δijΞσ(τ − τ ′) or Ξσ(ωn,k) = Ξσ(ωn) and such a site-diagonal function can be calculated by mapping the d → ∞ lattice problem (2.1) onto the atomic model with the auxiliary Kadanoff-Baym field [4] tσij(τ − τ ′) = δijJσ(τ − τ ′). (4.2) The self-consistent set of equations for Ξσ(ωn) and Jσ(ωn) (e.g., see [3] and references therein) is the following: 1 N ∑ k 1 Ξ−1 σ (ωn)− tk = 1 Ξ−1 σ (ωn)− Jσ(ωn) = G(a) σ (ωn, {Jσ(ωn)}), (4.3) where G (a) σ (ωn, {Jσ(ωn)}) is the Green’s function for the atomic limit (4.2). The grand canonical potential for the lattice is connected with the one for the atomic limit by the expression [4] Ω N = Ωa − 1 β ∑ nσ { lnG(a) σ (ωn)− 1 N ∑ k lnGσ(ωn,k) } . (4.4) On the other hand, we can write, for the grand canonical potential for the atomic limit Ωa, the same expansion as in equation (2.5) but with diagonal X operators at 1For n vertices of higher order a new primitive vertices can appear but we do not check this due to the rapid increase of the algebraic calculations with the increase of n. 88 Strong coupling Hartree-Fock approximation in the dynamical mean-field theory the same site. We can reduce their product to a single X operator that can be taken outside the exponent in (2.5), and its average is equal to 〈X pp〉0 = e−βλp/ ∑ q e −βλq . Finally, for the grand canonical potential for the atomic limit we get [10] Ωa = − 1 β ln ∑ p e−βΩ(p), (4.5) where Ω(p) are the “grand canonical potentials” for the subspaces. Now we can find the single-electron Green’s function for the atomic limit by G(a) σ (τ − τ ′) = δΩa δJσ(τ − τ ′) = ∑ p wpGσ(p)(τ − τ ′), (4.6) where Gσ(p)(τ − τ ′) are single-electron Green functions for the subspaces character- ized by the “statistical weights” wp = e−βΩ(p)/ ∑ q e −βΩ(q) and our single-site atomic problem exactly splits into four subspaces p = 0, 2, ↓, ↑. The fermionic Green’s function in subspaces can be written as Gσ(p)(ωn) = 1 Ξ−1 σ(p)(ωn)− Jσ(ωn) , Ξ−1 σ(p)(ωn) = iωn+µσ−Un (0) σ̄(p)−Σσ(p)(ωn), (4.7) where n (0) σ(p) = −dλp/dµσ = 0 for p = 0, σ̄ and 1 for p = 2, σ is an occupation of the state |p〉 by the electron with spin σ, and the self-energy Σσ(p)(ωn) depends on the hopping integral Jσ′(ωn′) only through quantities Ψσ′(p)(ωn′) = Gσ′(p)(ωn′)− Ξσ′(p)(ωn′). (4.8) Now, one can reconstruct the expressions for the grand canonical potentials Ω(p) in the subspaces from the known structure of Green’s functions: Ω(p) = λp− 1 β ∑ nσ ln ( 1− Jσ(ωn)Ξσ(p)(ωn) ) − 1 β ∑ nσ Σσ(p)(ωn)Ψσ(p)(ωn)+Φ(p), (4.9) where Φ(p) is some functional, such that its functional derivative with respect to Ψ produces the self-energy: δΦ(p)/δΨσ(p)(ωn) = Σσ(p)(ωn). So, if we can find or con- struct the self-energy Σσ(p)(ωn), we can find Green’s functions and grand canonical potentials for the subspaces and, according to equations (4.5) and (4.6), we can solve atomic problems. From the grand canonical potential (4.5) and (4.9) we get the following mean values nσ = ∑ p wpnσ(p), nσ(p) = n (0) σ(p) + 1 β ∑ n Ψσ(p)(ωn)− ∂Φ(p) ∂µσ , (4.10) where in the last term the partial derivative is taken over µσ not in the chains (4.8). For the Falicov-Kimball model J↓(ωn) = 0 and, as a result, Σ↑(p)(ωn) ≡ 0 and Ξ↑(p)(ωn) = g↑(p)(ωn) which immediately gives results of [4] (see also [13]). For the Hubbard model, there is no exact expression for the self-energy but the set of equations (4.7) and (4.9) permits one to construct different self-consistent approximations. 89 A.M.Shvaika 5. Hartree-Fock approximation One of the possible approximations is to construct the equation for the self-energy in the following form: Σσ(p)(ωn) = 1 β ∑ n′ UΨσ̄(p)(ωn′), (5.1) which, together with the expression for mean values nσ(p) = n (0) σ(p) + 1 β ∑ n Ψσ(p)(ωn), (5.2) gives, for the Green’s functions in the subspaces, an expression in the Hartree-Fock approximation: Gσ(p)(ωn) = 1 iωn + µσ − Unσ̄(p) − Jσ(ωn) . (5.3) Now, the grand canonical potentials in the subspaces are equal Ω(p) = λp− 1 β ∑ nσ ln [ 1− Jσ(ωn)Ξσ(p)(ωn) ] −U ( nσ(p) − n (0) σ(p) )( nσ̄(p) − n (0) σ̄(p) ) (5.4) and the Green’s function for the atomic problem (4.6) yield a four-pole structure, that, in contrast to the alloy-analogy solution Σσ(p)(ωn) = 0, possesses the correct Hartree-Fock limit for a small Coulombic interaction U ≪ t. On the other hand, in the same way as an alloy-analogy solution, it describes the metal-insulator transition with the change of U . In [10] it was shown that the main contributions into the total spectral weight function ρσ(ω) = 1 π ℑG(a) σ (ω−i0+) come from the subspaces p = 0 for the low electron concentrations (n < 2 3 , µ < 0), p = 2 for the low hole concentrations (2 − n < 2 3 , µ > U) and p = σ, σ̄ for the intermediate values. For the small electron or hole concentrations, the Green’s function for the atomic problem (4.6) possess the correct Hartree-Fock limits as well. It was supposed that the Hubbard model describes strongly-correlated electronic systems that contain four components (subspaces). Subspaces p = 0 and p = 2 describe the Fermi-liquid component (electron and hole, respectively) which is dominant for the small electron and hole concentrations, when the chemical potential is close to the bottom of the lower band or top of the upper one (“overdoped regime” of high-Tc’s). On the other hand, subspaces p =↑ and ↓ describe the non-Fermi-liquid (strongly correlated, e.g., RVB) component, which is dominant close to half-filling (“underdoped regime”). Here we consider possible magnetic orderings. At low temperatures, the p = 0 and p = 2 components for the low electron or hole concentrations are in the ferromagnetic state, while the non-Fermi-liquid one is antiferromagnetic (AF) close to half-filling, see figure 1. For the intermediate concentration values, the picture is very complicated, even frustrated. It is due to the fact that equations for the mean values (5.2) have several solutions in this region, which, on the other hand, are mutually connected with the dynamical mean field Jσ(ωn). It is difficult to 90 Strong coupling Hartree-Fock approximation in the dynamical mean-field theory 0.0 0.5 1.0 1.5 2.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 mF n 0.0 0.5 1.0 1.5 2.0 0.0 2.0x10 -5 4.0x10 -5 6.0x10 -5 8.0x10 -5 1.0x10 -4 2.0x10 -3 3.0x10 -3 mAF n Figure 1. Ferromagnetic mF and antiferromagnetic mAF order parameters vs electron concentration for U = 1.56, T = 0.14. determine the ground state for this, possibly “pseudo-gap”, region, which is located between the ferromagnetic and antiferromagnetic phases. In figure 2 we presented the phase diagram (T, U) – the temperature of the AF ordering vs correlation energy U , which is in a qualitative agreement with the results of [14,15] and reproduces the results of the Hartree-Fock theory and mean field approximation for U ≪ t and U ≫ t, respectively. Our results for the AF critical temperature for small U are higher than the one of the Quantum Monte Carlo simulations [14] by about a factor at three that describes the reduction of the Hartree-Fock solution by the lowest order quantum fluctuations [16]. 0 1 2 3 4 5 0.00 0.05 0.10 0.15 PM AF T U Figure 2. Phase diagram (T,U) at half-filling n = 1 (AF – antiferromagnetic phase, PM – paramagnetic phase). References 1. Metzner W., Vollhardt D. // Phys. Rev. Lett., 1989, vol. 62, p. 324. 2. Izyumov Yu.A. // Uspekhi Fiz. Nauk, 1995, vol. 165, p. 403 [Physics-Uspekhi, 1995, vol. 38, p. 385]. 3. Georges A., Kotliar G., Krauth W., Rosenberg M.J. // Rev. Mod. Phys., 1996, vol. 68, p. 13. 4. Brandt U., Mielsch C. // Z. Phys. B, 1989, vol. 75, p. 365; 1990, vol. 79, p. 295; 1991, vol. 82, p. 37. 91 A.M.Shvaika 5. Gebhard F. The Mott Metal-Insulator Transition: Models and Methods. Berlin, Springer-Verlag, 1997. 6. Cojocaru S.P., Moskalenko V.A. // Teor. Mat. Fiz., 1993, vol. 97, p. 270 [Theor. Math. Phys. USSR, 1993, vol. 97, p. 1290]; Moskalenko V.A., Kon L.Z. // Condens. Matter Phys., 1998, vol. 1(13), p. 23; Izyumov Yu.A., Chashchin N.I. // ibid., p. 41. 7. Slobodjan P.M., Stasyuk I.V. // Teor. Mat. Fiz., 1974, vol. 19, p. 423 [Theor. Math. Phys. USSR, 1974, vol. 19, p. 616]. 8. Izyumov Yu.A., Skryabin Yu.N. Statistical Mechanics of Magnetically Ordered Sys- tems. New York, Consultants Bureau, 1989. 9. Izyumov Yu.A., Letfulov B.M. // J. Phys.: Condens. Matter, 1990, vol. 2, p. 8905; Izyumov Yu.A., Letfulov B.M., Shipitsyn E.V., Bartkowiak M., Chao K.A. // Phys. Rev. B, 1992, vol. 46, p. 15697. 10. Shvaika A.M. // Phys. Rev. B, 2000, vol. 62, p. 2358. 11. Baym G., Kadanoff L.P. // Phys. Rev., 1961, vol. 124, p. 287; Baym G. // ibid., 1962, vol. 127, p. 1391. 12. Metzner W. // Phys. Rev. B, 1991, vol. 43, p. 8549. 13. Stasyuk I.V., Shvaika A.M. // J. Phys. Stud., 1999, vol. 3, p. 177. 14. Pruschke T., Cox D.L., Jarrell M. // Phys. Rev. B, 1993, vol. 47, p. 3553. 15. Kakehashi Y., Hasegawa H. // Phys. Rev. B, 1988, vol. 37, p. 7777; Rozenberg M.J., Kotliar G., Zhang X.Y. // ibid., 1994, vol. 49, p. 10181. 16. van Dongen P.G.J. // Phys. Rev. Lett., 1991, vol. 67, p. 757. Наближення сильного зв’язку типу Хартрі-Фока в теорії динамічного середнього поля А.М.Швайка Інститут фізики конденсованих систем НАН України, 79011 Львів, вул. Свєнціцького, 1 Отримано 23 серпня 2000 р. Для моделі Хаббарда побудовано термодинамічно самоузгоджену теорію, яка застосовна для довільних значень кулонівської кореляції ( U < ∞ ) в границі безмежної розмірності простору, коли повна до- поміжна задача точно розпадається на чотири підпростори з різни- ми “вакуумними станами”. Наведено ряд аналітичних результатів для наближення Хартрі-Фока, коли отримується чотириполюсна струк- тура для функцій Гріна: два полюси описують внески Фермі-рідинної компоненти, яка є феромагнітною і домінує при малих концентраці- ях електронів або дірок (“перелегований випадок” ВТНП), а інші два – внески від не-Фермі рідини, яка є антиферомагнітною і домінує по- близу половинного заповнення (“недолегований випадок”). Ключові слова: теорія динамічного середнього поля, наближення Хартрі-Фока, модель Хаббарда, (анти)феромагнетизм, сильний зв’язок PACS: 71.10.Fd, 71.15.Mb, 05.30.Fk, 71.27.+a 92