Classical relativistic system of N charges. Hamiltonian description, forms of dynamics, and partition function
The procedure of reducing canonical field degrees of freedom for a system of charged particles plus field in the constrained Hamiltonian formalism is elaborated up to the first order in the coupling constant expansion. The canonical realization of the Poincare algebra in the terms of particle variab...
Gespeichert in:
Datum: | 2001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2001
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/119756 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Classical relativistic system of N charges. Hamiltonian description, forms of dynamics, and partition function / A. Duviryak, A. Nazarenko, V. Tretyak // Condensed Matter Physics. — 2001. — Т. 4, № 1(25). — С. 5-14. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | The procedure of reducing canonical field degrees of freedom for a system of charged particles plus field in the constrained Hamiltonian formalism is elaborated up to the first order in the coupling constant expansion. The canonical realization of the Poincare algebra in the terms of particle variables is found. The relation between covariant and physical particle variables in the Hamiltonian description is written. The system of particles interacting by means of scalar and vector massive fields is also considered. The first order approximation in c⁻² is examined. An application to calculating the relativistic partition function of an interacting particle system is discussed. |
---|