Non-resonant Raman scattering through a metal-insulator transition: an exact analysis of the Falicov-Kimball model
For years, theories for Raman scattering have been confined to either the insulating or fully metallic state. While much can be learned by focusing attention on the metal or insulator, recent experimental work on the cuprate systems points to the desirability of formulating a theory for Raman...
Збережено в:
Дата: | 2001 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2001
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119773 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-resonant Raman scattering through a metal-insulator transition: an exact analysis of the Falicov-Kimball model / J.K. Freericks, T.P. Devereaux // Condensed Matter Physics. — 2001. — Т. 4, № 1(25). — С. 149-160. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | For years, theories for Raman scattering have been confined to either the
insulating or fully metallic state. While much can be learned by focusing attention
on the metal or insulator, recent experimental work on the cuprate
systems points to the desirability of formulating a theory for Raman response
which takes one through a quantum critical point – the metalinsulator
transition. Using the Falicov-Kimball model as a canonical model
of a MIT, we employ dynamical mean-field theory to construct an exact theory
for non-resonant Raman scattering. In particular we examine the formation
of charge transfer peaks and pseudogaps as well as the low-energy
dynamics. The results are qualitatively compared to the experimental B₁g
Raman spectra in the cuprates, which probes the hot quasiparticles along
the Brillouin zone axes. The results shed important information on normal
state electronic transport and the pseudo-gap in the cuprates. |
---|