The existence and stability of relativistic shock waves: general criteria and numerical simulations for a non-convex equation of state

A small viscosity approach to discontinuous flows is discussed in relativistic hydrodynamics with a general (possibly, non-convex) equation of state that typically occurs in the domains of phase transitions. Different forms of criteria for the existence and stability of relativistic shock waves,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1998
Hauptverfasser: Tytarenko, P.V., Zhdanov, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 1998
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119812
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The existence and stability of relativistic shock waves: general criteria and numerical simulations for a non-convex equation of state / P.V. Tytarenko, V.I. Zhdanov // Condensed Matter Physics. — 1998. — Т. 1, № 3(15). — С. 643-654. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A small viscosity approach to discontinuous flows is discussed in relativistic hydrodynamics with a general (possibly, non-convex) equation of state that typically occurs in the domains of phase transitions. Different forms of criteria for the existence and stability of relativistic shock waves, such as evolutionarity conditions, entropy criterion and corrugation stability conditions are compared with the requirement of the existence of shock viscous profile. The latter is shown to be most restrictive in case of a single-valued shock adiabat expressed as a function of pressure. One-dimensional numerical simulations with artificial viscosity for a simple piecewise-linear equation of state are carried out to illustrate the criteria in the case of planar and spherical shock waves. The effect of a phase transition domain on the shock amplitude in the process of a hydrodynamical spherical collapse is demonstrated.