Thermodynamics of a pseudospin-electron model without correlations
Thermodynamics of a pseudospin-electron model without correlations is investigated. The correlation functions, the mean values of pseudospin and particle number, as well as the thermodynamic potential are calculated. The calculation is performed by a diagrammatic method in the mean field approxim...
Збережено в:
Дата: | 1999 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
1999
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/119913 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Thermodynamics of a pseudospin-electron model without correlations / I.V. Stasyuk, A.M. Shvaika, K.V. Tabunshchyk // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 109-132. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-119913 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1199132017-06-11T03:03:46Z Thermodynamics of a pseudospin-electron model without correlations Stasyuk, I.V. Shvaika, A.M. Tabunshchyk, K.V. Thermodynamics of a pseudospin-electron model without correlations is investigated. The correlation functions, the mean values of pseudospin and particle number, as well as the thermodynamic potential are calculated. The calculation is performed by a diagrammatic method in the mean field approximation. Single-particle Green functions are taken in the Hubbard-I approximation. The numerical research shows that an interaction between the electron and pseudospin subsystems leads in the µ = const regime to the possibility of the first order phase transition at the temperature change with the jump of the pseudospin mean value 〈Sz〉 and reconstruction of the electron spectrum. In the regime n = const, an instability with respect to phase separation in the electron subsystem can take place for certain values of the model parameters. В роботі досліджується термодинаміка псевдоспін-електронної моделі при відсутності кореляцій. Розраховані часові кореляційні функції, середні значення операторів псевдоспіну і кількості частинок та термодинамічний потенціал. Разрахунок проведений діаграмним методом у наближенні середнього поля. Одночастинкові функції Гріна взяті у наближенні Хаббард-I. Чисельне дослідження демонструє, що взаємодія електронів з псевдоспінами в режимі µ = const приводить до можливості фазового переходу першого роду при зміні температури із стрибком середнього значення псевдоспіна〈Sz〉 і перебудовою електронного спектру. В режимі n = const при певних значеннях параметрів має місце нестабільність щодо фазового розшарування в електронній підситемі. 1999 Article Thermodynamics of a pseudospin-electron model without correlations / I.V. Stasyuk, A.M. Shvaika, K.V. Tabunshchyk // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 109-132. — Бібліогр.: 18 назв. — англ. 1607-324X DOI:10.5488/CMP.2.1.109 PACS: 71.10.Fd, 71.38.+i, 77.80.Bh, 63.20.Ry http://dspace.nbuv.gov.ua/handle/123456789/119913 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Thermodynamics of a pseudospin-electron model without correlations is
investigated. The correlation functions, the mean values of pseudospin and
particle number, as well as the thermodynamic potential are calculated.
The calculation is performed by a diagrammatic method in the mean field
approximation. Single-particle Green functions are taken in the Hubbard-I
approximation. The numerical research shows that an interaction between
the electron and pseudospin subsystems leads in the µ = const regime to
the possibility of the first order phase transition at the temperature change
with the jump of the pseudospin mean value 〈Sz〉 and reconstruction of
the electron spectrum. In the regime n = const, an instability with respect
to phase separation in the electron subsystem can take place for certain
values of the model parameters. |
format |
Article |
author |
Stasyuk, I.V. Shvaika, A.M. Tabunshchyk, K.V. |
spellingShingle |
Stasyuk, I.V. Shvaika, A.M. Tabunshchyk, K.V. Thermodynamics of a pseudospin-electron model without correlations Condensed Matter Physics |
author_facet |
Stasyuk, I.V. Shvaika, A.M. Tabunshchyk, K.V. |
author_sort |
Stasyuk, I.V. |
title |
Thermodynamics of a pseudospin-electron model without correlations |
title_short |
Thermodynamics of a pseudospin-electron model without correlations |
title_full |
Thermodynamics of a pseudospin-electron model without correlations |
title_fullStr |
Thermodynamics of a pseudospin-electron model without correlations |
title_full_unstemmed |
Thermodynamics of a pseudospin-electron model without correlations |
title_sort |
thermodynamics of a pseudospin-electron model without correlations |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
1999 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/119913 |
citation_txt |
Thermodynamics of a pseudospin-electron model without correlations / I.V. Stasyuk, A.M. Shvaika, K.V. Tabunshchyk // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 109-132. — Бібліогр.: 18 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT stasyukiv thermodynamicsofapseudospinelectronmodelwithoutcorrelations AT shvaikaam thermodynamicsofapseudospinelectronmodelwithoutcorrelations AT tabunshchykkv thermodynamicsofapseudospinelectronmodelwithoutcorrelations |
first_indexed |
2025-07-08T16:54:01Z |
last_indexed |
2025-07-08T16:54:01Z |
_version_ |
1837098485798666240 |
fulltext |
Condensed Matter Physics, 1999, Vol. 2, No. 1(17), p. 109–132
Thermodynamics of a pseudospin-
electron model without correlations
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
Institute for Condensed Matter Physics
of the National Academy of Sciences of Ukraine,
1 Svientsitskii Str., 290011 Lviv, Ukraine
Received February 1, 1999
Thermodynamics of a pseudospin-electron model without correlations is
investigated. The correlation functions, the mean values of pseudospin and
particle number, as well as the thermodynamic potential are calculated.
The calculation is performed by a diagrammatic method in the mean field
approximation. Single-particle Green functions are taken in the Hubbard-I
approximation. The numerical research shows that an interaction between
the electron and pseudospin subsystems leads in the µ = const regime to
the possibility of the first order phase transition at the temperature change
with the jump of the pseudospin mean value 〈Sz〉 and reconstruction of
the electron spectrum. In the regime n = const, an instability with respect
to phase separation in the electron subsystem can take place for certain
values of the model parameters.
Key words: pseudospin-electron model, local anharmonism, Hubbard-I
approximation, phase separation, phase transition
PACS: 71.10.Fd, 71.38.+i, 77.80.Bh, 63.20.Ry
1. Introduction
The model considering an interaction of electrons with a local anharmonic mode
of lattice vibrations has been used in the recent years in the theory of high-tempe-
rature superconducting crystals. Particularly, such a property is characteristic of
the vibrations of the so-called apex oxygen ions OIV along the c-axis direction of
the layered compounds of the YBa2Cu3O7-type structure [1–3]. An important role
of the apex oxygen and its anharmonic vibrations in the phase transition into the
superconducting state has already been mentioned [4,5] and a possible connection
between the superconductivity and lattice instability of the ferroelectric type in
high-Tc superconducting compounds has been discussed [6,7]. In the case of a
local double-well potential, the vibrational degrees of freedom can be presented
by pseudospin variables. The Hamiltonian of the derived in this way pseudospin-
c© I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk 109
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
electron model has the following form [8]:
H =
∑
i
Hi +
∑
ijσ
tijb
+
iσbjσ, (1.1)
and includes, besides the terms describing electron transfer (∼ tij), the electron
correlation (U-term), interaction with the anharmonic mode (g-term), the energy
of the tunnelling splitting (Ω-term) and the energy of the anharmonic potential
asymmetry (h-term) in the single-site part
Hi = Uni↑ni↓ + E0(ni↑ + ni↓) + g(ni↑ + ni↓)S
z
i − ΩSx
i − hSz
i . (1.2)
Here, E0 gives the origin for energies of the electron states at the lattice site
(E0 = −µ).
In this paper, our aim is to obtain expressions for the correlation functions
which determine dielectric susceptibility and the mean values of pseudospin and
particle number operators, as well as the thermodynamic potential in the case of
Ω = 0 and the absence of the Hubbard correlation U = 0.
We perform the numerical calculations and investigate the mean values of pseu-
dospin and particle number operators with the change of asymmetry parameter h
(T=const) or temperature T (h=const) for the cases of a fixed chemical potential
value (regime µ=const) and a constant mean particle number (regime n=const).
An analysis of the thermodynamic properties of the pseudospin-electron model in
the case of absence of the electron correlation is also made.
2. Hamiltonian and initial relations
We shall write the Hamiltonian of the model and the operators which corre-
spond to physical quantities in the second quantized form using operators of the
electron creation (annihilation) at a site with a certain pseudospin orientation
aσi = bσi(
1
2
+ Sz
i ), a+σi = b+σi(
1
2
+ Sz
i ),
ãσi = bσi(
1
2
− Sz
i ), ã+σi = b+σi(
1
2
− Sz
i ). (2.1)
Then, we obtain the following expression for the initial Hamiltonian:
H =
∑
i
{ε(ni↑ + ni↓) + ε̃(ñi↑ + ñi↓)− hSz
i }
= H0 +Hint (2.2)
+
∑
ijσ
tij(a
+
iσajσ + a+iσãjσ + ã+iσajσ + ã+iσãjσ),
(2.3)
where
ε = E0 + g/2, ε̃ = E0 − g/2 (2.4)
110
Thermodynamics of a pseudospin-electron model without correlations
are energies of the single-site states; H0 is a single-site (diagonal) term, Hint is a
hopping term.
The introduced operators satisfy the following commutation rules:
{ã+iσ, ãjσ′} = δijδσσ′(
1
2
− Sz
i ), {ã+iσ, ajσ′} = 0,
{a+iσ, ajσ′} = δijδσσ′(
1
2
+ Sz
i ), {a+iσ, ãjσ′} = 0. (2.5)
In order to calculate the pseudospin mean values we shall use the standard repre-
sentation of the statistical operator in the form
e−βH = e−βH0 σ̂(β), (2.6)
σ̂(β) = Tτ exp
−
β
∫
0
Hint(τ)dτ
, (2.7)
which gives the following expressions for 〈Sz
l 〉:
〈Sz
l 〉 =
1
〈σ̂(β)〉0
〈Sz
l σ̂(β)〉0 = 〈Sz
l σ̂(β)〉
c
0. (2.8)
Here, the operators are given in the interaction representation
A(τ) = eτH0Ae−τH0 , (2.9)
the averaging 〈. . .〉0 is performed over statistical distribution with the Hamiltonian
H0, and the symbol 〈. . .〉c0 denotes separation of connected diagrams.
3. Perturbation theory for pseudospin mean values and a dia-
gram technique
Expansion of the exponent in (2.7) in powers of Hint (2.2) leads, after substi-
tution in equation (2.8), to an expression that has the form of the sum of infinite
series with terms containing the averages of the T -products of the electron creation
(annihilation) operators (2.1). The evaluation of such averages can be made using
the Wick theorem.
In our case this theorem has some differences from the standard formulation.
Namely, each pairing of operators (2.1) contains operator factors, i.e.
✛
ai(τ
′)a+o (τ)= ğ(τ ′ − τ)δioP
+
i ,
✛
ãi(τ
′)ã+o (τ)= g̃(τ ′ − τ)δioP
−
i , (3.1)
✲
a+o (τ)ai(τ
′)= −ğ(τ ′ − τ)δioP
+
i ,
✲
ã+o (τ)ãi(τ
′)= −g̃(τ ′ − τ)δioP
−
i .
Finally, this gives the possibility to express the result in terms of the products of
nonperturbed Green functions
ğio(τ − τ ′) =
〈Tτai(τ)a
+
o (τ
′)〉0
〈{aia+o }〉0
= eε(τ
′−τ)δoi
{
(1 + e−βε)−1 , τ > τ ′ ,
−(1 + eβε)−1 , τ ′ > τ ,
(3.2)
111
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
g̃io(τ − τ ′) =
〈Tτ ãi(τ)ã
+
o (τ
′)〉0
〈{ãiã+o }〉0
= eε̃(τ
′−τ)δoi
{
(1 + e−βε̃)−1 , τ > τ ′ ,
−(1 + eβε̃)−1 , τ ′ > τ ,
g̃io(τ − τ ′) = g̃(τ − τ ′)δio, ğio(τ − τ ′) = ğ(τ − τ ′)δio,
and averages of a certain number of the projection operators
P+
i =
1
2
+ Sz
i , P−
i =
1
2
− Sz
i . (3.3)
Let us demonstrate this procedure for one of the terms which appear in the fourth
order of the perturbation theory for 〈Sz
l 〉:
β
∫
0
dτ1
β
∫
0
dτ2
β
∫
0
dτ3
β
∫
0
dτ4
∑
iji1j1
∑
i2j2i3j3
tijti1j1ti2j2ti3j3 (3.4)
×〈TτS
z
l a
+
i (τ1)aj(τ1)ã
+
i1
(τ2)aj1(τ2)a
+
i2
(τ3)ãj2(τ3)a
+
i3
(τ4)aj3(τ4)〉0.
The stepwise pairing of a certain operator with the other ones gives the possi-
bility to reduce expression (3.4) to the sum of the averages of a smaller number of
operators
〈TτS
z
l a
+
i (τ1)aj(τ1)ã
+
i1
(τ2)aj1(τ2)a
+
i2
(τ3)ãj2(τ3)a
+
i3
(τ4)aj3(τ4)〉0
= 〈TτS
z
l
✲
a+i (τ1)aj(τ1)ã
+
i1
(τ2)aj1(τ2)a
+
i2
(τ3)ãj2(τ3)a
+
i3
(τ4)aj3(τ4) 〉0
+〈TτS
z
l
✲
a+i (τ1)aj(τ1)ã
+
i1
(τ2)aj1(τ2) a
+
i2
(τ3)ãj2(τ3)a
+
i3
(τ4)aj3(τ4)〉0
= −ğij3(τ1 − τ4)〈TτS
z
l P
+
j3
aj(τ1)ã
+
i1
(τ2)aj1(τ2)a
+
i2
(τ3)ãj2(τ3)a
+
i3
(τ4)〉0 (3.5)
− ğij1(τ1 − τ2)〈TτS
z
l P
+
j1
aj(τ1)ã
+
i1
(τ2)a
+
i2
(τ3)ãj2(τ3)a
+
i3
(τ4)aj2(τ3)〉0.
The successive application of the pairing procedure for (3.5) leads, finally, to
−ğij1(τ1−τ2)g̃i1j2(τ2−τ3)ği3j(τ4−τ1)ği2j1(τ3−τ2)〈TτS
z
l P
+
j P+
j1
P−
j2
P+
j3
〉0
−ğij3(τ1−τ4)g̃i1j2(τ2−τ3)ği2j(τ3−τ1)ği3j1(τ4−τ2)〈TτS
z
l P
+
j P+
j1
P−
j2
P+
j3
〉0 (3.6)
+ğij3(τ1−τ4)g̃i1j2(τ2−τ3)ği2j1(τ3−τ2)ği3j(τ4−τ1)〈TτS
z
l P
+
j P+
j1
P−
j2
P+
j3
〉0.
We introduce the diagrammatic notations
− Sz
l ; 1 1′ − t11′ ;
1 1′ − (ğ11′P
+
1 + g̃11′P
−
1 )
and diagrams
; 2×
112
Thermodynamics of a pseudospin-electron model without correlations
which correspond to expression (3.6).
Expansion of (3.6) in semi-invariants leads to multiplication of diagrams (semi-
invariants are represented by ovals surrounding the corresponding vertices with
diagonal operators and contain the δ-symbol on site indexes). For example,
2. 3.
4. 5.
1.
6.
;
; ;
; ;
.
We shall omit diagrams of types 2, 3, 5, i.e. the types including semi-invariants of a
higher than the first order in the loop (this means that chain fragments form single-
electron Green functions in the Hubbard-I approximation) and also connection of
two loops by more than one semi-invariant (this approximation means that a self-
consistent field is taken into account in the zero approximation).
Let us proceed to the momentum-frequency representation in the expressions
for the Green functions determined on a finite interval 0<τ<β when they can be
expanded in the Fourier series with discrete frequencies
ğ(τ) =
1
β
∑
n
eiωnτ ğ(ωn), g̃(τ) =
1
β
∑
n
eiωnτ g̃(ωn), (3.7)
ğ(ωn) = −
1
iωn − ε
, g̃(ωn) = −
1
iωn − ε̃
, ωn =
2n+ 1
β
π.
The characteristic feature of the already presented diagrams and the diagrams
corresponding to other orders of the perturbation theory is the presence of chain
fragments. The simplest series of chain diagrams is
+ ++= . . . , (3.8)
where
= g(ωn) =
〈P+〉
iωn − ε
+
〈P−〉
iωn − ε̃
(3.9)
and corresponds to the Hubbard-I approximation for a single-electron Green func-
tion. The expression
= Gk(ωn) =
1
g−1(ωn)− tk
(3.10)
113
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
in the momentum-frequency representation corresponds to the sum of graphs (3.8).
The poles of function Gk(ωn) determine the spectrum of the single-electron exci-
tations
εI,II(tk) =
1
2
(2E0 + tk)±
1
2
√
g2 + 4tk〈Sz〉g + t2k . (3.11)
Behaviour of the electron bands as a function of the coupling constant is pre-
sented in figure 1. One can see that there always exists a gap in the spectrum. The
widths of subbands depends on the mean value of the pseudospin and in the case
of strong coupling (g ≫ W ) the subbands’ halfwidth is equal to W (1
2
± 〈Sz〉) (W
is the halfwidth of the initial electron band).
0.0 0.5 1.0 1.5 2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
εε
g
Figure 1. Electron bands boundaries (W = 0.4, 〈Sz〉 = 0.2).
Let us now return to the problem of summation of the diagram series for the
mean value 〈Sz
l 〉 taking into account the above mentioned arguments. The diagram
series has the form
〈Sz
l 〉 = = - + _1
2!
-
- _1
3!
+ ... .
(3.12)
The analytical expressions for the loop has the following form
=
2
N
∑
n,k
t2k
g−1(ωn)− tk
(
P+
i
iωn − ε
+
P−
i
iωn − ε̃
)
= β(α1P
+
i + α2P
−
i ), (3.13)
114
Thermodynamics of a pseudospin-electron model without correlations
where we used the notations
α1 =
2
Nβ
∑
n,k
t2k
(g−1(ωn)− tk)
1
(iωn − ε)
, α2 =
2
Nβ
∑
n,k
t2k
(g−1(ωn)− tk)
1
(iωn − ε̃)
.
Using decomposition into simple fractions and summation over frequency we obtain
α1=
2
N
∑
k
tk
[
A1n(εI(tk))+B1n(εII(tk))
]
, α2=
2
N
∑
k
tk
[
A2n(εI(tk))+B2n(εII(tk))
]
,
where
A1 =
εI(tk)− ε̃
εI(tk)− εII(tk)
, B1 =
εII(tk)− ε̃
εII(tk)− εI(tk)
,
A2 =
εI(tk)− ε
εI(tk)− εII(tk)
, B2 =
εII(tk)− ε
εII(tk)− εI(tk)
,
and n(ε) = 1
1 + eβε
is a Fermi distribution.
The equation for 〈Sz
l 〉 can be presented in the form
〈Sz
l 〉 = 〈Sz
l 〉0 − 〈Sz
l β(α1P
+
l + α2P
−
l )〉c0
+
1
2!
〈Sz
l β
2(α1P
+
l + α2P
−
l )2〉c0 − . . . = 〈Sz
l e
−β(α1P
+
l
+α2P
−
l
)〉c0. (3.14)
Let us introduce
HMF =
∑
i
HMF
i ,
where
HMF
i = Hi 0 + α1P
+
i + α2P
−
i .
Then, the analytical equation for 〈Sz
l 〉 can be expressed in the form
〈Sz
l 〉 = 〈Sz
l 〉MF =
Sp(Sz
l e
−βHMF)
Sp(e−βHMF)
=
1
2
tanh
{
β
2
(h+ α2 − α1) + ln
1 + e−βε
1 + e−βε̃
}
. (3.15)
The difference α2 − α1 corresponds to an internal effective self-consistent field
acting on the pseudospin
α2 − α1 =
2
N
∑
k
tk
ε− ε̃
εI(tk)− εII(tk)
[
n(εII(tk))− n(εI(tk))
]
. (3.16)
115
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
4. The mean value of the particle number
The diagram series for the mean value 〈ni〉 (using the perturbation theory, the
Wick theorem and expansion in semi-invariants) can be presented in the form
〈ni〉 = = - + _1
2!
-
,Σ++ ...
α
α
α
- _1
3!
.
(4.1)
where
α =
〈P α〉
iωn − εα
, α =
1
iωn − εα
, = n̂i,
P α = (P+;P−), εα = (ε; ε̃)
and the last term appears due to the pairing of the electron creation (annihilation)
operators with the operator of the particle number.
An analytical expression for (4.1) can be obtained starting from formulae (3.9),
(3.10):
〈ni〉 = 〈ni〉MF +
2
Nβ
∑
n,k,α
t2k
(g−1(ωn)− tk)
〈P α〉
(iωn − εα)2
. (4.2)
Using decomposition into simple fractions and summation over frequency we
can present the mean value 〈ni〉 in the form:
〈ni〉 =
2
N
∑
k
[
n(εI(tk)) + n(εII(tk))
]
− 2〈P+〉n(ε̃)− 2〈P−〉n(ε). (4.3)
5. Thermodynamic potential
In order to calculate the thermodynamic potential let us introduce parameter
λ ∈ [0, 1] in the initial Hamiltonian
Hλ = H0 + λHint, (5.1)
such that H → H0 for λ = 0 and H → H0 +Hint for λ = 1.
Hence,
Zλ = Sp(e−βHλ) = Sp(e−βH0σ̂λ(β)) = Z0〈σ̂λ(β)〉0,
where
σ̂λ(β) = Tτ exp
−λ
β
∫
0
Hint(τ)dτ
,
116
Thermodynamics of a pseudospin-electron model without correlations
and
Ωλ = −
1
β
lnZ0 −
1
β
ln〈σ̂λ(β)〉0, (5.2)
∆Ωλ = Ωλ − Ω0 = −
1
β
ln〈σ̂λ(β)〉0.
Here Ω0 is a thermodynamic potential calculated with the single-site (diagonal)
part of the initial Hamiltonian.
Therefore,
∆Ω =
1
∫
0
dλ
(
dΩλ
dλ
)
. (5.3)
For value dΩλ/dλ, we can immediately write the diagram series in the next form:
β
dΩλ
dλ
= + + ...+ , (5.4)
where tλ , and also
-= - + 1
2
_
!
.+ . . .- 1
3 !
_
Expression (5.3) can be presented in the form (using the diagram series (5.4)):
∆Ω =
2
Nβ
∑
n,k
1
∫
0
λt2kg
2
λ(ωn)
1
1− λtkgλ(ωn)
dλ
= −
2
Nβ
∑
n,k
ln(1− tkg(ωn))−
2
Nβ
∑
n,k
1
∫
0
λtk
dgλ(ωn)
dλ
1− λtkgλ(ωn)
dλ. (5.5)
117
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
The first term in expression (5.5) may be written in a diagram form as
+ ...1
2
_ 1
4
_+1
3
_+ .
(5.6)
Series (5.6) describes an electron gas whose energy spectrum is defined by the
total pseudospin field. This series is in conformity with the so-called one-loop
approximation.
The second term in expression (5.5) can be integrated to the following diagram
series
1
3!−−12! +
−
− ... −
,
(5.7)
and appears due to the presence of a pseudospin subsystem.
Finally, the diagram series for β∆Ω can be written as a sum of expressions
(5.6) and (5.7), and the corresponding analytical expression is the following:
∆Ω = −
2
Nβ
∑
k
ln
(cosh β
2
εI(tk))(cosh
β
2
εII(tk))
(cosh β
2
ε)(cosh β
2
ε̃)
−
1
β
ln cosh
{
β
2
(h+ α2 − α1) + ln
1 + e−βε
1 + e−βε̃
}
+
1
β
ln cosh
{
β
2
h+ ln
1 + e−βε
1 + e−βε̃
}
+ 〈Sz〉(α2 − α1). (5.8)
Here, decomposition in simple fractions and summation over frequency were done.
Then, since the thermodynamic potential is a function of the argument 〈Sz〉, let
us check the consistency of approximations made for 〈Sz〉, 〈n〉 and thermodynamic
potential Ω. For this purpose let us derive the mean values 〈Sz〉 and 〈n〉 from the
expression for the grand thermodynamic potential
dΩ
d(−µ)
=
2
N
∑
k
[
n(εI(tk)) + n(εII(tk))
]
− 2〈P+〉n(ε̃)− 2〈P−〉n(ε),
dΩ
d(−h)
=
1
2
tanh
{
β
2
(h+ α2 − α1) + ln
1 + e−βε
1 + e−βε̃
}
.
118
Thermodynamics of a pseudospin-electron model without correlations
We thus obtain
dΩ
d(−µ)
= 〈n〉,
dΩ
d(−h)
= 〈Sz〉.
Therefore, the calculation of the mean values of the pseudospin and particle num-
ber operators as well as the thermodynamic potential is performed in the same
approximation which corresponds to the mean field one.
6. Pseudospin, electron and mixed correlators
In this section our aim is to calculate the correlators
Kss
lm(τ − τ ′) = 〈T S̃z
l (τ)S̃
z
m(τ
′)〉c,
Ksn
lm(τ − τ ′) = 〈T S̃z
l (τ)ñm(τ
′)〉c,
Knn
lm (τ − τ ′) = 〈T ñl(τ)ñm(τ
′)〉c,
constructed of the operators given in the Heisenberg representation with an imag-
inary time argument.
Let us present a diagram series for the correlation function (in the momentum-
frequency representation) within a self-consistent scheme in the framework of the
generalized random phase approximation (GRPA) (which was applied in [9,10]
where the magnetic susceptibility of the ordinary Hubbard model and t−J model
was considered). In our case (the absence of the Hubbard correlation) this approx-
imation is reduced, because the so-called ladder diagrams [11] with antiparallel
lines disappear.
We would like to remind that we have omitted diagrams including semi-inva-
riants of a higher than the first order in the loop and also connection of two loops
by more than one semi-invariant.
〈SzSz〉q = = − Σ
β
α
α , β
βα
,
(6.1)
where we define
α
α α=( ), − ++ = = Γα(k, ωn);
P α = (P+, P−); α = (0, 1); εα = (ε, ε̃); α
α= P = S
z
.;
119
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
Here, the first term in equation (6.1) takes into account a direct influence of the
internal effective self-consistent field on pseudospins and is given by
−= +
−
1
2!− −
+ . . .1
3!− .
(6.2)
Series (6.2) means a second-order semi-invariant renormalized due to the “single-
tail” parts, and is thus calculated by HMF.
The second term in equation (6.1) describes an interaction between pseudospins
which is mediated by electrons (the energy of the electron spectrum is defined by
the total pseudospin field).
We introduce the shortened notations
Π
α,β
q
=
β
β
α
α
.
(6.3)
Solution of equation (6.1) can be written in the analytical form
〈SzSz〉q =
1/4− 〈Sz〉2
1 +
∑
α,β
(−1)α+β Π
α,β
q
(1
4
− 〈Sz〉2)
, (6.4)
where
Π
α,β
q
=
2
N
∑
n,k
tktk+qΓ
α(k, ωn)Γ
β(k + q, ωn), (6.5)
Γα(k, ωn) =
1
(iωn − εα)
1
(1− tkg(ωn))
. (6.6)
Decomposition of function Γα(k, ωn) into simple fractions and the subsequent eval-
uation of the sum over frequency leads to the next expression:
∑
α,β
(−1)α+β Π
α,β
q
=
2β
N
∑
k
tktk+q(ε− ε̃)2
[εI(tk)− εII(tk)][εI(tk+q)− εII(tk+q)]
×
{
n[εI(tk)]− n[εI(tk+q)]
εI(tk)− εI(tk+q)
+
n[εII(tk)]− n[εII(tk+q)]
εII(tk)− εII(tk+q)
−
n[εI(tk)]− n[εII(tk+q)]
εI(tk)− εII(tk+q)
−
n[εII(tk)]− n[εI(tk+q)]
εII(tk)− εI(tk+q)
}
. (6.7)
120
Thermodynamics of a pseudospin-electron model without correlations
After substitution (6.7) in equation (6.4) we finally obtain an expression for
〈SzSz〉q.
This formula for the uniform case (q = 0) can be rewritten as
〈SzSz〉q=0= (1/4− 〈Sz〉2) (6.8)
×
{
1−
(
4β
N
∑
k
t2k
(ε− ε̃)2
[εI(tk)− εII(tk)]3
{n[εI(tk)]− n[εII(tk)]}
+
β2
2N
∑
k
t2k(ε− ε̃)2
[εI(tk)− εII(tk)]2
{
1
cosh2 βεI(tk)
2
+
1
cosh2 βεII(tk)
2
})
(
1
4
− 〈Sz〉2)
}−1
.
Expression (6.8) can be obtained from the derivative d〈Sz〉/d(βh). This means
that the mean values of the pseudospin and pseudospin correlators are derived in
the same approximation.
For a mixed correlator the diagram series has the form
〈Szn〉q =
I II
+ ,. (6.9)
where
I = = − Σ α
α
α , β
β
β
,
(6.10)
II = ΣΣ
α , β
β
α
α
α
α
β
= +
,
. .. (6.11)
α
α α=( ), − ++ = = P αΓα(k, ωn).
Solution of equation (6.10) can be written in the analytical form
I = 2(n(ε)− n(ε̃))〈SzSz〉q. (6.12)
Here we start from formula (6.4) and from the next relation:
〈Szn〉MF − 〈Sz〉〈n〉
1
4
− 〈Sz〉2
= 2(n(ε)− n(ε̃)). (6.13)
121
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
The second term in diagram series (6.9) can be presented as
II =
2
N
〈SzSz〉q
∑
k
tk(ε− ε̃)
εI(tk)− εII(tk)
×
[
n[εI(tk)]− n[εI(tk+q)]
εI(tk)− εI(tk+q)
+
n[εI(tk)]− n[εII(tk+q)]
εI(tk)− εII(tk+q)
−
n[εII(tk)]− n[εI(tk+q)]
εII(tk)− εI(tk+q)
−
n[εII(tk)]− n[εII(tk+q)]
εII(tk)− εII(tk+q)
]
. (6.14)
Let us introduce the shortened notations for expression (6.14)
II = 〈SzSz〉q[⊕]q. (6.15)
In this way we obtain
〈Szn〉q = 2
[
n(ε)− n(ε̃)
]
〈SzSz〉q + 〈SzSz〉q[⊕]q. (6.16)
From our diagram series we can see: correlators containing the pseudospin variable
Sz are different from zero only in a static case. This is due to the fact that operator
Sz commutes with the Hamiltonian, being an integral of motion.
For an electron correlator our diagram series has the form:
〈nn〉q,ω = + + +
I II III IV
+
+
V
,
. . . .
. .
(6.17)
and only the last term is not equal to zero for non-zero frequencies. Let us consider
series (6.17) term by term.
The first term in series (6.17) may be written as
I = = − Σ α
α
α , β
β
β
.
(6.18)
After simple transformation we can obtain the next relation:
〈nn〉MF − 〈n〉2 −
1
2
(
〈P+〉
cosh2 βε
2
+
〈P−〉
cosh2 βε̃
2
)
=
(〈nSz〉MF − 〈n〉〈Sz〉)2
〈P+〉〈P−〉
. (6.19)
This relation makes it possible to write immediately a simple analytical expression
for series (6.18)
I =
{
[2(n(ε)− n(ε̃))]2〈SzSz〉q +
1
2
(
〈P+〉
cosh2 βε
2
+
〈P−〉
cosh2 βε̃
2
)
}
δ(ω). (6.20)
122
Thermodynamics of a pseudospin-electron model without correlations
Analytical expressions for the II-term can be obtained starting from formulae
(6.11)–(6.15)
II =
{
2[n(ε)− n(ε̃)]〈SzSz〉q[⊕]q
}
δ(ω). (6.21)
Using expression (6.16) we can unite (6.21) and (6.20)
I + II =
{
2(n(ε)− n(ε̃))〈Szn〉q +
1
2
(
〈P+〉
cosh2 βε
2
+
〈P−〉
cosh2 βε̃
2
)
}
δ(ω). (6.22)
The diagram series for the fourth term in (6.17) has the form
= Σα
α
α
α
α
βΣ
α , β
+
.. . . Σα
α
α + Σ
α , β
β
α
β
.
.
and can be written as
IV =. .= [⊕]q〈S
zSz〉q[⊕]qδ(ω). (6.23)
Using formula (6.16) once more we unite the III-term and the IV -term
III + IV = 〈nSz〉q[⊕]qδ(ω). (6.24)
The last term can be presented in the form
α β
βα
Σ
α , β
α
α
α
Σ
α
−−2=
.
.. . . . .
(6.25)
Let us write down the final formula for an electron correlator for the uniform
(q = 0) and static (ω = 0) case
〈nn〉 = 2(n(ε)− n(ε̃))〈Szn〉q=0 +
1
2
(
〈P+〉
cosh2 βε
2
+
〈P−〉
cosh2 βε̃
2
)
(6.26)
+
β
2N
∑
k
tk(ε− ε̃)
εI(tk)− εII(tk)
{
1
cosh2 βεII(tk)
2
−
1
cosh2 βεI(tk)
2
}
〈Szn〉q=0
+
1
2N
∑
k
{
1
cosh2 βεII(tk)
2
+
1
cosh2 βεI(tk)
2
}
−
1
2
{
1
cosh2 βε
2
+
1
cosh2 βε̃
2
}
.
The same result can be obtained from the derivative d〈n〉/(dβµ). Thus, all our
quantities: the mean values of the pseudospin and particle number operators, the
thermodynamic potential as well as correlation functions are derived within the
framework of one approximation which corresponds to the mean field approxima-
tion.
123
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
7. Numerical research in the µ = const regime
In the investigation of equilibrium conditions we shall separate two regimes:
µ=const and n=const. For the first regime the equilibrium is defined by the min-
imum of the thermodynamic potential:
(
∂Ω
∂〈Sz〉
)
T,µ,h
= 0.
The µ=const regime corresponds to the case when charge redistribution be-
tween the conducting sheets CuO2 and other structural elements (charge reser-
voir, e.g., nonstoichiometric in oxygen CuO chains in YBaCuO-type structures) is
allowed.
The dependencies of the order parameter 〈Sz〉 on field h and temperature T at
the constant value of the chemical potential are determined by equation (3.15). All
the integrals in (3.15) can be calculated analytically at zero temperature (below,
all the calculations will be performed for the rectangular density of states, but we
would like to note that the similar behaviour can be obtained in the case of the
semi-elliptic density of states).
We shall present all our results for the case of zero temperature as well as for
the case of non-zero temperature.
a)
-1.0 -0.5 0.0 0.5 1.0
0.0
0.5
1.0
1.5
2.0
n=0
n=0 0<n<2
0<n<2
S
z
=-1/2
S
z
=+1/2
n=2
n=2
h
µµ
b)
-1.0 -0.5 0.0 0.5 1.0
0.0
0.5
1.0
1.5
2.0
h
µµ
n=0 0<n<2
0<n<2
n=0
n=2
n=2
S
z
=+1/2
S
z
=-1/2
Figure 2. Phase diagram µ - h. Dotted and thin solid lines surround regions with
Sz = ±1
2 , respectively. Thick solid line indicate the first order phase transition
points. a) the case of zero temperature; b) T = 0.002 (W = 0.2; g = 1) .
The phase diagrams µ-h which indicate stability regions for states with
〈Sz〉 = ±1
2
are shown in figure 2 for g ≫ W .
One can see two regions of the µ and h values where the states with 〈Sz〉 = 1
2
and 〈Sz〉 = −1
2
are both stable. In the vicinity of these regions the phase transitions
of the first order with the change of the longitudinal field h and/or chemical
potential µ take place and they are shown by thick lines on phase diagrams in
figure 2.
The field dependencies of 〈Sz〉 and Ω near the phase transition point are pre-
sented in figures 3, 4. Their behaviour in the cases of T = 0 and T 6= 0 with
124
Thermodynamics of a pseudospin-electron model without correlations
0.18 0.20 0.22 0.24 0.26 0.28
-0.5
-0.3
-0.1
0.1
0.3
0.5
h
S
z
0.18 0.20 0.22 0.24 0.26 0.28
-0.5
-0.3
-0.1
0.1
0.3
0.5
h
S
z
Figure 3. Field dependency of 〈Sz〉 (W = 0.2, µ = −0.4, g = 1.0) for µ=const
regime; T = 0.01 and T = 0.
the change of the chemical potential is similar: S-like for the mean value of the
pseudospin and a fish tail form for the thermodynamic potential.
In the µ=const regime, the chemical potential can appear in the electron bands
or out of them with the change of field h (dashed line in figure 5), and in the vicinity
of the phase transition point this results in a rapid change of electron concentration
(dotted lines in figure 6) due to a charge transfer from/to the reservoir (CuO
planes). The widths of the electron subbands depend on the mean value of the
pseudospin which results in the presented above behaviours.
The phase transition point is presented by a crossing point on the dependence
Ω(h) (figure 4). At the same time this value is determined according to the Maxwell
rule from the plot of function Sz(h).
0.18 0.20 0.22 0.24 0.26 0.28
-0.14
-0.13
-0.12
-0.11
-0.10
ΩΩ
h 0.18 0.20 0.22 0.24 0.26 0.28
-0.14
-0.13
-0.12
-0.11
-0.10
ΩΩ
h
Figure 4. Field dependency of thermodynamic potential (W = 0.2, µ = −0.4,
g = 1.0); T = 0.01 and T = 0.
125
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
0.18 0.20 0.22 0.24 0.26 0.28
-0.6
-0.3
0.0
0.3
0.6
εε
µµ
h 0.18 0.20 0.22 0.24 0.26 0.28
-0.6
-0.3
0.0
0.3
0.6
εε
µµ
h
Figure 5. Field dependency of electron bands boundaries (W = 0.2, µ = −0.4,
g = 1.0); T = 0.01 and T = 0.
0.18 0.20 0.22 0.24 0.26 0.28
0.0
0.3
0.6
0.9
1.2
1.5
n
h 0.18 0.20 0.22 0.24 0.26 0.28
0.0
0.3
0.6
0.9
1.2
1.5
n
h
Figure 6. Field dependency of electron concentration (W = 0.2, µ = − 0.4,
g = 1.0); T = 0.01 and T = 0.
126
Thermodynamics of a pseudospin-electron model without correlations
With the temperature increase the region of phase coexistence narrows, and the
corresponding phase diagram Tc-h is shown in figure 7a. The tilt of the coexistence
curve testifies to the possibility of the first order phase transition at a change of
temperature with a jump of the pseudospin mean value. (The phase diagram Tc-µ
has a similar form). The existence of the shifted and tilted coexistence curve as
the result of the local pseudospin-electron interaction was obtained for the first
time in [12] for a pseudospin-electron model with a direct interaction between
pseudospins.
The analysis of the thermodynamic potential behaviour with the temperature
increase (figure 7b) shows that the lowest value of Ω(T ) corresponds to the jump
of the mean value of the pseudospin (dotted lines in figure 8) from the branch
which corresponds to the low temperature phase to that of the hight temperature
phase. The analysis of the 〈SzSz〉 behaviour with the temperature decrease shows
that the high temperature phase is stable up to zero temperature. This means that
the vertical line on the Tc-h phase diagram only once crosses the boundary of the
phase stability.
In figures the case when the chemical potential is placed in the lower subband
is presented. There is no specific behaviour when the chemical potential is placed
out of the bands. And if the chemical potential is placed in the upper subband our
results transform according to the internal symmetry of the Hamiltonian:
µ → −µ, h → 2g − h, n → 2− n, Sz → −Sz. (7.1)
a)
0.20 0.22 0.24 0.26
0.000
0.005
0.010
0.015
0.020
0.025
h
T
W=0.15
W=0.2 b)
-0.14
-0.13
-0.12
-0.11
0.00 0.01 0.02 0.03ΤΤ
ΩΩ
Figure 7. a) phase diagram Tc-h (g = 1, µ = −0.4); b) temperature dependence
of the thermodynamic potential (W = 0.2, h = 0.22, µ = −0.4, g = 1).
8. Numerical research in the n = const regime
In the regime of a fixed value of electron concentration the first order phase
transition with a jump of the pseudospin mean value accompanied by a change of
electron concentration transforms into a phase separation.
127
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
The dependence of the mean value of the particle number (or electron concen-
tration) on the chemical potential is one of the factors determining thermodynam-
ically stable states of the system. One can see the regions with dµ/dn 6 0 where
states with a homogenous distribution of particles are unstable, which corresponds
to the phase separation into the regions with different electron concentrations and
pseudospin mean values (figures 9 and 10).
In the n=const regime the equilibrium condition is determined by the minimum
of free energy F = Ω + µN . In the phase separated region the free energy as a
function of n deflects up (figure 10) and concentrations of the separated phases
are determined by the tangent line touch points (these points are also the points
of binodal lines which are determined according to the Maxwell rule from the
function µ(n), see figure 9).
The resulting phase diagram T -n is shown in figure 11.
0.00 0.01 0.02 0.03 0.04
-0.6
-0.4
-0.2
0.0
0.2
0.4
S
z
T 0.00 0.01 0.02 0.03 0.04
-0.6
-0.3
0.0
0.3
0.6
S
z
S
z
T
Figure 8. Dependence of the mean value of the pseudospin and the pseudospin-
pseudospin correlation function on temperature (W = 0.2, h = 0.22, µ = − 0.4,
g = 1).
9. Conclusions
Investigation of a pseudospin-electron model in the case of electron correlation
absence was performed in the mean field approximation using the Hubbard-I ap-
proximation for the calculation of a single-particle Green function. We presented
the analytical consideration of our model and all the quantities were obtained
within the framework of one self-consistent approximation.
As the result of numerical investigations we have obtained:
1) there is always a gap in the electron spectrum (with a change of the mean
value of the pseudospin a reconstruction of the electron spectrum takes place);
2) the possibility of the first order phase transition with a change of the lon-
gitudinal field h (as a consequence of this the S-like behaviour of the mean value
128
Thermodynamics of a pseudospin-electron model without correlations
0.0 0.5 1.0 1.5 2.0
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
h=0.3
h=0.2
h=0.1
h=0.0
n
µµ
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
h=0.3
h=0.2
h=0.1
h=0.0
S
z
µµ
Figure 9. Dependence of the chemical potential µ on the electron concentration
n and the pseudospin mean value 〈Sz〉 for different h values (g = 1, W = 0.2,
T = 0.01).
0.0 0.5 1.0 1.5
-0.46
-0.44
-0.42
-0.40
T=0.0
T=0.01
T=0.017
µµ
n 0.0 0.5 1.0 1.5 2.0
-0.008
-0.004
0.000
0.004
0.008
∆F
T=0.0
T=0.01
T=0.017
n
Figure 10. Dependence of the chemical potential µ on the electron concentration
n and deviation of the free energy from linear dependence for different T values
(g = 1, W = 0.2, h = 0.2).
129
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
0.0 0.3 0.6 0.9 1.2 1.5
0.000
0.005
0.010
0.015
0.020
n
T
Figure 11. Phase diagram T -n (g = 1, W = 0.2 h = 0.2) for a phase separated
state. Solid line indicates binodal points, dashed line indicates spinodal points.
of the pseudospin with a jump in the phase transition point (which corresponds
to the inflected point on the dependence Ω(h)) is obtained and at this point the
concentration rapidly redistributes between the conducting sheets CuO2 and the
charge reservoir (CuO planes) in YBaCuO-type structures);
3) the phase coexistence curve is tilted from the vertical line, therefore, there
exists a possibility of the first order phase transition with the temperature change;
4) the high temperature phase is stable in the whole region of temperatures
(figure 8);
5) in the regime n=const we have the regions with dµ/dn < 0, which corre-
sponds to phase separation with the appearance of regions with different electron
concentrations and different orientations of pseudospins.
Analytical expressions for the mean values, thermodynamic functions and sus-
ceptibilities of such a simplified pseudospin-electron model (U = 0, Ω = 0) were
obtained for the uniform phase, when 〈Sz
i 〉 = 〈Sz〉, and only the possibilities of
phase transitions with uniform changes (q = 0) were analysed numerically. On the
other hand, it is known that for certain parameter values the charge ordered phase
can exist in a strong coupling limit of the pseudospin-electron model (U → ∞) [13]
which calls for the consideration of the possible superstructure orderings in the op-
posite limit of U = 0 and will be the subject of our further investigations.
References
1. Cohen R.E., Pickett W.E., Krakauer H. Theoretical determination of strong electron-
phonon coupling in YBa2Cu3O7. // Phys. Rev. Lett., 1990, vol. 64, No. 21,
130
Thermodynamics of a pseudospin-electron model without correlations
p. 2575–2578.
2. Maruyama H., Ishii T., Bamba N., Maeda H., Koizumi A., Yoshikawa Y., Yamazaki H.
Temperature dependence of the EXAFS spectrum in YBa2Cu3O7−δ compounds. //
Physica C, 1989, vol. 160, No. 5/6, p. 524.
3. Conradson S.D., Raistrick I.D. The axial oxygen atom and superconductivity in
YBa2Cu3O7. // Science, 1989, vol. 243, No. 4896, p. 1340.
4. Müller K.A. // Phase transition, 1988, (Special issue).
5. Bishop A.R., Martin R.L., Müller K.A., Tesanovic Z. Superconductivity in oxides:
Toward a unified picture. // Z. Phys. B - Condensed Matter, 1989, vol. 76, No. 1,
p. 17–24.
6. Hirsch J.E., Tang S. Effective interactions in an oxygen-hole metal. // Phys. Rev. B,
1989, vol. 40, No. 4, p. 2179–2186.
7. Frick M., von der Linden W., Morgenstern I., Raedt H. Local anharmonic vibrations,
strong correlations and superconductivity: A quantum simulation study. // Z. Phys. B
- Condensed Matter, 1990, vol. 81, No. 2, p. 327–335.
8. Stasyuk I.V., Shvaika A.M. Dielectric properties and electron spectrum of the Müller
model in the HTSC theory. // Acta Physica Polonica A, 1993, vol. 84, No. 2, p. 293–
313.
9. Izyumov Yu.A., Letfulov B.M. Spin fluctuations and superconducting states in the
Hubbard model with a strong Coulomb repulsion. // J. Phys. - Condens. Matter,
1991, No. 3, p. 5373.
10. Izyumov Yu.A., Letfulov B.M. Diagram technique for Hubbard operators. Phase dia-
gram for (t− J)-model. Preprint USSR Acad. Sci. Ural Div., 90/2, 1990, 72 p.
11. Stasyuk I.V., Shvaika A.M. Dielectric instability and local anharmonic model in the
theory of high-Tc superconductivity. // Physica C, 1994, vol. 235–240, p. 2173–2174.
12. Stasyuk I.V., Havrylyuk Yu. Phase transitions in pseudospin-electron model with di-
rect interaction between pseudospins. Preprint of the Institute for Condensed Matter
Physics, ICMP-98-18E, Lviv, 1998, 20 p.
13. Stasyuk I.V., Shvaika A.M. Dielectric instability and vibronic-type spectrum of lo-
cal anharmonic model of high-Tc superconductors. // Ferroelectrics, 1997, vol. 192,
p. 1–10.
14. Stasyuk I.V., Shvaika A.M. Pseudospin-electron model in large dimensions. Preprint
of the Institute for Condensed Matter Physics, ICMP–98–20E, Lviv, 1998, 16 p.
15. Stasyuk I.V., Trachenko K.O. Investigation of locally anharmonic models of struc-
tural phase transitions. Seminumerical approach. // Cond. Matt. Phys., 1997, No. 9,
p. 89–107.
16. Danyliv O.D. Phase transitions in the two-sublattice pseudospin-electron model of
high temperature superconducting systems. // Physica C, 1998, vol. 309, p. 303–314.
17. Gervais F. Oxygen polarizability in ferroelectrics. A clue to understanding supercon-
ductivity in oxides? // Ferroelectrics, 1992, vol. 130, p. 45–76.
18. Kurtz S.K., Hardy J.R., Floken J.W. Structural phase transition, ferroelectricity and
high-temperature superconductivity. // Ferroelectrics, 1988, vol. 87, p. 29–40.
131
I.V.Stasyuk, A.M.Shvaika, K.V.Tabunshchyk
Термодинаміка псевдоспін-електронної моделі при
відсутності кореляцій
І.В.Стасюк, А.М.Швайка, К.В.Табунщик
Інститут фізики конденсованих систем НАН Укpаїни,
290011 Львів, вул. Свєнціцького, 1
Отримано 1 лютого 1999 р.
В роботі досліджується термодинаміка псевдоспін-електронної мо-
делі при відсутності кореляцій. Розраховані часові кореляційні функ-
ції, середні значення операторів псевдоспіну і кількості частинок
та термодинамічний потенціал. Разрахунок проведений діаграмним
методом у наближенні середнього поля. Одночастинкові функції Грі-
на взяті у наближенні Хаббард-I. Чисельне дослідження демонструє,
що взаємодія електронів з псевдоспінами в режимі µ = const приво-
дить до можливості фазового переходу першого роду при зміні тем-
ператури із стрибком середнього значення псевдоспіна 〈Sz〉 і пере-
будовою електронного спектру. В режимі n = const при певних зна-
ченнях параметрів має місце нестабільність щодо фазового розша-
рування в електронній підситемі.
Ключові слова: псевдоспін-електронна модель, локальний
ангармонізм, наближення Хаббард-I, фазове розшарування,
фазовий перехід
PACS: 71.10.Fd, 71.38.+i, 77.80.Bh, 63.20.Ry
132
|