Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice

Within the investigated model of a one-dimensional bi- and tri-molecular chemically reacted crystal, the asymptotic behaviour of the amplitude of a two-particle static structure factor (as a function of the crystal length) has been discovered. The nonlinear fluctuational scenario leads us to the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Gerasimov, O.I., Khudyntsev, N.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 1999
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119921
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice / O.I. Gerasimov, N.N. Khudyntsev // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 75-79. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119921
record_format dspace
spelling irk-123456789-1199212017-06-11T03:03:20Z Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice Gerasimov, O.I. Khudyntsev, N.N. Within the investigated model of a one-dimensional bi- and tri-molecular chemically reacted crystal, the asymptotic behaviour of the amplitude of a two-particle static structure factor (as a function of the crystal length) has been discovered. The nonlinear fluctuational scenario leads us to the conclusion as to the possibility of existence of an asymptotic metastable cluster fragmentation within initially homogeneous 1D systems. A connection between some possible effects and the properties of the fluctuations in reacting systems and reactive dynamics in a partially filled lattice is also shown. Запропонована модель одновимірного кристалу з дво- та тримолекулярними хімічними реакціями, для якої досліджена асимптотична поведінка амплітуди двочастинкового статичного структурного фактору (як функції довжини кристала). Аналіз нелінійного характеру флуктуацій свідчить про принципову можливість існування асимптотичних метастабільних станів у модельному одновимірному кристалі з однорідними початковими умовами. Також досліджено зв’язок між флуктуаційними властивостями та динамікою систем, що реагують, та деякими ефектами, що можуть виникати на цілком заповнених гратках. 1999 Article Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice / O.I. Gerasimov, N.N. Khudyntsev // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 75-79. — Бібліогр.: 9 назв. — англ. 1607-324X DOI:10.5488/CMP.2.1.75 PACS: 61.20.Gy, 82.40.-g. http://dspace.nbuv.gov.ua/handle/123456789/119921 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Within the investigated model of a one-dimensional bi- and tri-molecular chemically reacted crystal, the asymptotic behaviour of the amplitude of a two-particle static structure factor (as a function of the crystal length) has been discovered. The nonlinear fluctuational scenario leads us to the conclusion as to the possibility of existence of an asymptotic metastable cluster fragmentation within initially homogeneous 1D systems. A connection between some possible effects and the properties of the fluctuations in reacting systems and reactive dynamics in a partially filled lattice is also shown.
format Article
author Gerasimov, O.I.
Khudyntsev, N.N.
spellingShingle Gerasimov, O.I.
Khudyntsev, N.N.
Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice
Condensed Matter Physics
author_facet Gerasimov, O.I.
Khudyntsev, N.N.
author_sort Gerasimov, O.I.
title Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice
title_short Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice
title_full Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice
title_fullStr Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice
title_full_unstemmed Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice
title_sort fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1d lattice
publisher Інститут фізики конденсованих систем НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/119921
citation_txt Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice / O.I. Gerasimov, N.N. Khudyntsev // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 75-79. — Бібліогр.: 9 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT gerasimovoi fluctuationaldynamicsandthestructurefactorofnonlinearreactivesystemsona1dlattice
AT khudyntsevnn fluctuationaldynamicsandthestructurefactorofnonlinearreactivesystemsona1dlattice
first_indexed 2025-07-08T16:54:49Z
last_indexed 2025-07-08T16:54:49Z
_version_ 1837098537862561792
fulltext Condensed Matter Physics, 1999, Vol. 2, No. 1(17), p. 75–79 Fluctuational dynamics and the structure factor of nonlinear reactive systems on a 1D lattice O.I.Gerasimov, N.N.Khudyntsev Odesa State Hydrometheorological Institute, 100 Lvivska Str., 270011 Odesa, Ukraine Received September 16, 1998 Within the investigated model of a one-dimensional bi- and tri-molecular chemically reacted crystal, the asymptotic behaviour of the amplitude of a two-particle static structure factor (as a function of the crystal length) has been discovered. The nonlinear fluctuational scenario leads us to the conclusion as to the possibility of existence of an asymptotic metastable cluster fragmentation within initially homogeneous 1D systems. A connec- tion between some possible effects and the properties of the fluctuations in reacting systems and reactive dynamics in a partially filled lattice is also shown. Key words: chemical reactions, structure factor, 1D lattice. PACS: 61.20.Gy, 82.40.-g. 1. Introduction One-dimensional models are known to be an effective tool for solving a variety of problems in statistical mechanics. In the past decades much attention in such areas as chemical reactions, random walks and aggregation problems has been paid to the role of dimensionality [1]. In particular, work carried out in Brussels by Nicolis, Provata, Prakash, Tretyakov and Turner has showed that restricting space to low dimension can cause deviations from the mean field behaviour, depending on the type of the nonlinearity involved. For instance, while the bimolecular reaction A+X ←→ 2X shows the mean field behaviour on a 1D completely filled lattice, the trimolecular reaction A+2X ←→ 3X stabilizes in such a lattice in a nonequilibrium locally frozen asymptotic state in which the ratio of the average number A to X particles is a constant quite different from the mean-field value. The work carried out within the framework of the IUAP project during our stay in Brussels focused on two topics: the properties of the fluctuations in the reacting systems and the study of reactive dynamics in a partially filled lattice. A c© O.I.Gerasimov, N.N.Khudyntsev 75 O.I.Gerasimov, N.N.Khudyntsev manuscript summarizing the results is currently being prepared for publication in Europhysics Letters. We hereafter summarize the prinsipal steps and conclusions. 2. Fluctuations in a completely filled 1D lattice Consider the bimolecular reaction 2X ←→ A + X on an ideal totally filled 1D lattice of M sites, bearing in mind that a given species can only react with its nearest neighbours and that particles cannot overlap. We adopt as an initial condition a uniform configuration containing only X particles. Since at equilibrium all the positive configurations of A of X particles, except the one of a lattice filled completely by A, can be generated from this initial condition, the probability distribution gM (NA) is given by gM (NA) = ( M NA ) / M−1 ∑ NA=0 ( M NA ) = 21−M ( M NA ) (1) with NA +NX = M. From (1) one recovers asymptotically (M →∞) the previous result of Nicolis et al. r = 〈NA〉 / 〈NX〉 = 1. Furthermore, one can compute a covariant matrix of the fluctuations around the mean particle numbers 〈 δN2 A 〉 = 〈 N2 A 〉 − 〈NA〉2 = − M 4 , 〈δNAδNX〉 = − 〈 δN2 A 〉 = M 4 , (2) etc. Coming now to the trimolecular model and adopting the same initial condition, one can easily see that because of the geometric constrains involved, for each given NA, at least NA − 1 sites cannot be occupied by A particles. The probability distribution replacing (1) is thus gM (NA) = ( M − 1−NA NA ) M−1 ∑ NA=0 ( M − 1−NA NA ) = 2M √ 5 ( 1 + √ 5 )M − ( 1− √ 5 )M ( M − 1−NA NA ) . (3) Again, the expression reproduces the value 〈NA〉 / 〈NX〉 ≈ 0.38 obtained pre- viously by Nicolis et al. However, one is now also in the position to compute the properties of the fluctuations. For instance, one finds 1 M 〈δNXδNA〉 = 2 5 ( 1 + √ 5 )   2√ 5 ( 1− √ 5 ) − 1 5   . (4) 76 Fluctuational dynamics and structure factor 3. Partially filled lattice Next we allow for vacancies in the lattice, starting with an initial configuration in which NX particles (NX < M) are distributed randomly among the M sites available. We also introduce three auxiliary variables: – the number of nearest neighbours pairs occupied simultaneously by X par- ticles – NXX , – the number of nearest neighbours pairs of which only one is occupied by X particles – N0X , – the number of nearest neighbours pairs both of which are empty – N00. The following relations between these variables are easily established 2NXX +N0X = 2NX , 2N00 +N0X = 2 (M −NX) , (5) showing that of these three variables only one can be chosen independently, say NXX . The number of different configurations of X particles with only NXX pairs is then GM (NX , NXX) = ( NX NX −NXX )( M −NX NX −NXX ) . (6) Since A particles can only be generated from the configurations involving contin- uous X particles, the conditional probability to find NA particles in the system is ( NXX NA ) (up to factor), and the equilibrium distribution of the lattice is, for the bimolecular model, gM (NA, NX) = NX−1 ∑ NXX=0 2−NXX ( NX NX −NXX )( M −NX NX −NXX )( NXX NA ) . (7) This expression can be reduced to a form exhibiting a confluent hypergeometric function and used to calculate the fluctuations of the number of particles. The principal result of this analysis is that now the fluctuations behave anomalously 〈δNAδNX〉 ≈ λ2M2, (8) where λ = N (0) X /M is an initial filling fraction. 4. Structure factor To get an idea of the type of spatial inhomogeneities locally created in the lattice we evaluated the structure factor of the system, a quantity the additional interest of which is in its experimental accessibility. 77 O.I.Gerasimov, N.N.Khudyntsev Let g be a wave number associated with the inhomogeneities. The structure factor is then SAX (g) = ∞ ∑ l=−∞ ∞ ∑ l′=−∞ eig(l−l′) 〈 ∑ n∈NA δkrnl ∑ m∈NX δkrml′ 〉 , (9) where l and l′ denote the lattice sites. Performing the summations over l and l′ we obtain SAX (g) = 1 2 (1− cos g) 〈( 1− eigNA ) ( 1− eigNX )〉 . (10) In the long wavelength (“hydrodynamic”) limit g → 0 this expression reduces to SAX (g) ∼ 〈δNAδNX〉 − Γg2. (11) The g-dependence of this function reflects the existence of a spatial variability. However, since the extremum of SAX is at g = 0, no preferred length scale emerges. The situation is likely to change in the trimolecular model which is currently under investigation. 5. Acknowledgements The authors would like to thank J.W.Turner for useful discussions. O.I.G. thanks the Belgian Federal Office for Scientific, Technical and Cultural Affairs for the financial support of his research under the Poles d’Attraction Interuniversi- taire Program. He expresses gratitude to the Center for Nonlinear Phenomena and Complex Systems at Universite Libre de Bruxelles, Belgium, for the financial support, hospitality and fruitful cooperation. References 1. Nicolis G., Prigogine I. Self-organization in Nonequilibrium Systems. New York, Wiley, 1977. 2. Provata A., Turner J.W., Nicolis G. Nonlinear chemical dynamics in low dimensions: an exactly soluble model. // Journ. Stat. Phys., 1993, vol. 70, p. 1195–1213. 3. Prakash S., Nicolis G. Dynamics of fluctuations in a reactive system of low spatial dimension. // Journ. Stat. Phys., 1996, vol. 82, p. 297–322. 4. Tretyakov A., Provata A., Nicolis G. Nonlinear chemical dynamics in low-dimensional lattices and fractal sets. // Journ. Phys. Chem., 1995, vol. 99, p. 2770–2776. 5. Monthus C., Hilhorst H.J. The pair correlation function in a randomly sequentially filled 1D lattice. // Phisica A, 1991, vol. 175, p. 263–274. 6. Hill T.L. Statistical Thermodynamics. London, Addison Wesley, 1960. 7. Feller W. An Introduction to Probability Theory and Its Applications. New York, Wiley, 1971. 8. Prudnicov A.P., Brychkov Yu.A., Marichev O.J. Integrals and Series (vol. 1–3). New York, Gordon and Breach Sci. Pub., 1990. 78 Fluctuational dynamics and structure factor 9. Gradstein J.C., Ryzhik J.M. Tables of Integrals, Sums, Series and Products. Moscow, Nauka Pub., 1963 (in Russian). Флуктуаційна динаміка та структурний фактор нелінійної системи з реакціями на одновимірній гратці Герасимов О.І., Худинцев М.М. Одеський гідрометеорологічний інститут, 270011 Одеса, вул. Львівська, 100 Отримано 16 вересня 1998 р. Запропонована модель одновимірного кристалу з дво- та тримоле- кулярними хімічними реакціями, для якої досліджена асимптотич- на поведінка амплітуди двочастинкового статичного структурного фактору (як функції довжини кристала). Аналіз нелінійного характе- ру флуктуацій свідчить про принципову можливість існування асим- птотичних метастабільних станів у модельному одновимірному кри- сталі з однорідними початковими умовами. Також досліджено зв’я- зок між флуктуаційними властивостями та динамікою систем, що ре- агують, та деякими ефектами, що можуть виникати на цілком запов- нених гратках. Ключові слова: хімічні реакції, структурний фактор, одновимірна гратка. PACS: 61.20.Gy, 82.40.-g. 79 80