Modulated structures in the ANNNI model with an external magnetic field near criticality

Conditions for a phase transition from the paramagnetic state to the modulated structure are found in a class of anisotropic Ising models with an external magnetic field. The critical value of the external magnetic field is obt...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1999
Автори: Gonchar, N.S., Hajduk, H.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 1999
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119922
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modulated structures in the ANNNI model with an external magnetic field near criticality / N.S. Gonchar, H.G. Hajduk // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 3-14. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119922
record_format dspace
spelling irk-123456789-1199222017-06-11T03:02:59Z Modulated structures in the ANNNI model with an external magnetic field near criticality Gonchar, N.S. Hajduk, H.G. Conditions for a phase transition from the paramagnetic state to the modulated structure are found in a class of anisotropic Ising models with an external magnetic field. The critical value of the external magnetic field is obtained. Branching equations are derived and small branching theorems are proven for commensurate and incommensurate configurations. Знайдено умови фазового переходу із парамагнітного стану до модульованої структури в класі анізотропних моделей Ізінга з зовнішнім магнітним полем. Обчислено значення критичного магнітного поля. Отримані рівняння галуження та доведені теореми про малі галуження для співмірних та неспівмірних конфігурацій. 1999 Article Modulated structures in the ANNNI model with an external magnetic field near criticality / N.S. Gonchar, H.G. Hajduk // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 3-14. — Бібліогр.: 8 назв. — англ. 1607-324X DOI:10.5488/CMP.2.1.3 PACS: 05.50.+q, 64.60.Cn http://dspace.nbuv.gov.ua/handle/123456789/119922 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Conditions for a phase transition from the paramagnetic state to the modulated structure are found in a class of anisotropic Ising models with an external magnetic field. The critical value of the external magnetic field is obtained. Branching equations are derived and small branching theorems are proven for commensurate and incommensurate configurations.
format Article
author Gonchar, N.S.
Hajduk, H.G.
spellingShingle Gonchar, N.S.
Hajduk, H.G.
Modulated structures in the ANNNI model with an external magnetic field near criticality
Condensed Matter Physics
author_facet Gonchar, N.S.
Hajduk, H.G.
author_sort Gonchar, N.S.
title Modulated structures in the ANNNI model with an external magnetic field near criticality
title_short Modulated structures in the ANNNI model with an external magnetic field near criticality
title_full Modulated structures in the ANNNI model with an external magnetic field near criticality
title_fullStr Modulated structures in the ANNNI model with an external magnetic field near criticality
title_full_unstemmed Modulated structures in the ANNNI model with an external magnetic field near criticality
title_sort modulated structures in the annni model with an external magnetic field near criticality
publisher Інститут фізики конденсованих систем НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/119922
citation_txt Modulated structures in the ANNNI model with an external magnetic field near criticality / N.S. Gonchar, H.G. Hajduk // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 3-14. — Бібліогр.: 8 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT goncharns modulatedstructuresintheannnimodelwithanexternalmagneticfieldnearcriticality
AT hajdukhg modulatedstructuresintheannnimodelwithanexternalmagneticfieldnearcriticality
first_indexed 2025-07-08T16:54:56Z
last_indexed 2025-07-08T16:54:56Z
_version_ 1837098543355002880
fulltext Condensed Matter Physics, 1999, Vol. 2, No. 1(17), p. 3–14 Modulated structures in the ANNNI model with an external magnetic field near criticality N.S.Gonchar, H.G.Hajduk Bogolubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14 b Metrolohichna Str., 252143 Kyiv, Ukraine Received December 3, 1997 Conditions for a phase transition from the paramagnetic state to the mod- ulated structure are found in a class of anisotropic Ising models with an external magnetic field. The critical value of the external magnetic field is obtained. Branching equations are derived and small branching theorems are proven for commensurate and incommensurate configurations. Key words: anisotropic Ising model, phase transition, paramagnetic phase, commensurate configuration, incommensurate configuration, critical magnetic field PACS: 05.50.+q, 64.60.Cn Here we consider a class of anisotropic Ising models with an external magnetic field and show a phase transition from the paramagnetic state to spatially inho- mogeneous commensurate configuration or incommensurate one below the critical magnetic field. To be more exact, we illustrate the method on the ANNNI model [1,2], but one can apply it to models with an arbitrary number of interacting neighbours. Any N1-periodic configuration x can be expressed [3] as x = N ∑ l=1 (ale1(lq) + ble2(lq)) + a0ǫ, (1) where N = [N1/2], [c] is an integral part of c, q = m/N1 is an irreducible quotient, ǫ = {ai} +∞ i=−∞, ai = 1 ∀i, e1(q) = {cos i2πq}+∞ i=−∞, e2(q) = {sin i2πq}+∞ i=−∞ . c© N.S.Gonchar, H.G.Hajduk 3 N.S.Gonchar, H.G.Hajduk Then, the specific free energy for commensurate configuration (1) has the form [4] Fh = − 1 2 ( 1 2 N ∑ l=1 (( 1 + δ l,[N1+1 2 ] ) a2l + ( 1− δ l,[N1+1 2 ] ) b2l ) Φ(lq) (2) + a20Φ(0) ) + ha0 + 1 2 T 〈ǫ, g (x)〉 , where function g is g(x) = (1 + x) ln(1 + x) + (1− x) ln(1− x) = lim n→∞ 2 ( x2 2 + x4 3 · 4 + · · ·+ x2n 2n · (2n− 1) ) provided that N ∑ l=1 (|al|+ |bl|) + |a0| < 1. For the ANNNI model Φ(q) = −2(J1 cos 2πq + J2 cos 4πq + 2J0), and for the case when all the neighbours interact Φ(q) = −2 ( +∞ ∑ i=1 Ji cos 2πiq + 2J0 ) . The free energy (2) is invariant under a discrete transformation group [5] a′l = al cos 2πlsq + bl sin 2πlsq, b′l = −al sin 2πlsq + bl cos 2πlsq, (3) q = m/N1, s = 0, 1, · · · , N1. The free energy of incommensurate configuration (1) with irrational q and arbitrary N is [6] Fh = − 1 2 ( 1 2 N ∑ l=1 (a2l + b2l )Φ(lq) + a20Φ(0) ) + ha0 + 1 2 T 〈ǫ, g (x)〉 . (4) The free energy (4) is invariant of group G [3] a′l = al cos lφ0 + bl sin lφ0, b′l = −al sin lφ0 + bl cos lφ0, (5) φ0 ∈ [0, 2π]. 4 Modulated structures in the ANNNI model The necessary conditions of a free energy minimum are the equations −alΦ(lq) ( 1 + δ l,[N1+1 2 ] ) + T 〈ǫ, g′(x)e1(lq)〉 = 0, −blΦ(lq) ( 1− δ l,[N1+1 2 ] ) + T 〈ǫ, g′(x)e2(lq)〉 = 0, (6) −a0Φ(0) + h+ T 〈ǫ, g′(x)〉 /2 = 0, g′(x) = ln 1 + x 1− x = 2 ( x+ x3 3 + x5 5 + · · ·+ x2n+1 2n+ 1 + · · · ) , for rational q and −alΦ(lq) + T 〈ǫ, g′(x)e1(lq)〉 = 0, −blΦ(lq) + T 〈ǫ, g′(x)e2(lq)〉 = 0, (7) −a0Φ(0) + h+ T 〈ǫ, g′(x)〉 /2 = 0 for irrational q. In the external magnetic field the systems (6) and (7) have a nonzero solution in the set of vectors {(a1, b1), · · · , (aN , bN), a0} such that N ∑ l=1 (|al|+ |bl|) + |a0| < 1. The solution has the form {(0, 0), · · · , (0, 0), ā0} with ā0 solving the equation −ā0Φ(0) + Tg′(ā0)/2 + h = 0. (8) We assume that x = x̄+ ā0ǫ, x̄ = N ∑ l=1 (ale1(lq) + ble2(lq)) + a′0ǫ, g′(x) = +∞ ∑ k=1 g(k)(ā0) (k − 1)! x̄k−1 = g′(ā0)ǫ+ g′′(ā0)x̄+ ϕ(x̄), g′(ā0ǫ) = g′(ā0)ǫ, x̄ǫ = x̄, ϕ(x̄) = +∞ ∑ k=3 g(k)(ā0) (k − 1)! x̄k−1. Then, system (6) becomes al ( T/ ( 1− ā20 ) − Φ(lq) )( 1 + δ l,[N1+1 2 ] ) + T 〈ǫ, ϕ(x̄)e1(lq)〉 = 0, bl ( T/ ( 1− ā20 ) − Φ(lq) )( 1− δ l,[N1+1 2 ] ) + T 〈ǫ, ϕ(x̄)e2(lq)〉 = 0, (9) 2a′0 ( T/ ( 1− ā20 ) − Φ(0) ) + T 〈ǫ, ϕ(x̄)〉 = 0, 5 N.S.Gonchar, H.G.Hajduk and system (7) becomes al ( T/(1− ā20)− Φ(lq) ) + T 〈ǫ, ϕ(x̄)e1(lq)〉 = 0, bl ( T/(1− ā20)− Φ(lq) ) + T 〈ǫ, ϕ(x̄)e2(lq)〉 = 0, (10) 2a′0 ( T/(1− ā20)− Φ(0) ) + T 〈ǫ, ϕ(x̄)〉 = 0. A spatially inhomogeneous solution of systems (6), (7) exists if systems (9), (10) have a nonzero solution. The first degeneration of the spectrum of the linearized part of nonlinear operator (9) or (10) occurs when T/ (1− ā20)− Φ(q) = 0, −ā0Φ(0) + Tg′(ā0)/2 + h = 0. (11) If there exists a solution to system (11), then the zero solution to systems (9), (10) bifurcates. It means that a transition from the paramagnetic phase to the modulated structure occurs. As a result, system (11) gives a single equivalent equation T = Φ(q)− Φ(q)h2 / [ Φ(0)− 1 2 T ( 1− T/Φ(q) )− 1 2 g′ ( 1− T/Φ(q) ) 1 2 ]2 . (12) From (12) it follows: Lemma 1. The critical magnetic field for a phase transition from the paramag- netic state to the modulated structure is equal to |Φ(0)|. For the proof see [7]. Having in mind that the mean-field theory critical exponent β equals 1/2, we suppose a deviation from the critical temperature to be standard. Therefore, λ2(T, h) = Φ(q)− T/ ( 1− ā20 ) , where ā0 solves equation (8). If T0(h) solves equation (12), then λ2(T0(h), h) equals zero. In terms of new variables, system (10) for irrational q takes the form: −λ2a1 + T 〈ǫ, ϕ(x̄)e1(q)〉 = 0, −λ2b1 + T 〈ǫ, ϕ(x̄)e2(q)〉 = 0, (13) al ( Φ(q)− Φ(lq)− λ2 ) + T 〈ǫ, ϕ(x̄)e1(lq)〉 = 0, bl ( Φ(q)− Φ(lq)− λ2 ) + T 〈ǫ, ϕ(x̄)e2(lq)〉 = 0, (14) 2a′0 ( Φ(q)− Φ(0)− λ2 ) + T 〈ǫ, ϕ(x̄)〉 = 0. We seek the solution of systems (13), (14) in the form a1 = λã1, b1 = λb̃1, al = λ2ãl, bl = λ2b̃l, a′0 = λ2ã′0. 6 Modulated structures in the ANNNI model Then we rewrite (13), (14) as ã1 = F (1) 1 (w̃) = T λ3 +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−1 〈 ǫ, (·)k−1 e1(q) 〉 , (15) b̃1 = F (2) 1 (w̃) = T λ3 +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−1 〈 ǫ, (·)k−1 e2(q) 〉 , ãl =F (1) l (w̃)= T λ2(λ2 +Φ(lq)− Φ(q)) +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−1 〈 ǫ, (·)k−1 e1(lq) 〉 , b̃l =F (2) l (w̃)= T λ2(λ2 +Φ(lq)− Φ(q)) +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−1 〈 ǫ, (·)k−1 e2(lq) 〉 , ã′0 =F (0) 0 (w̃)= T 2λ2(λ2 +Φ(0)− Φ(q)) +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−1 〈 ǫ, (·)k−1 〉 , (16) where w̃ = {λ, z̃, ã1, b̃1}, z̃ = {ã, b̃} = ( {ã2, b̃2}, · · · , {ãN , b̃N}, ã ′ 0 ) , ( · ) = ( λ N ∑ l=2 (ãle1(lq) + b̃le2(lq)) + λã′0ǫ+ ã1e1(q) + b̃1e2(q) ) . Let’s consider the norm |z̃| = max 26l6N {|ãl|, |b̃l|, |ã ′ 0|} and the radius A ball-centred at the point z̃0 = ( {ã02, b̃ 0 2}, · · · , {ã 0 N , b̃ 0 N}, ã ′0 0 ) in a set of vectors z̃, where ã0l = T λ2+Φ(lq)−Φ(q) +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−3 〈 ǫ, (ã1e1(q)+b̃1e2(q)) k−1e1(lq) 〉 , b̃0l = T λ2+Φ(lq)−Φ(q) +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−3 〈 ǫ, (ã1e1(q)+b̃1e2(q)) k−1e2(lq) 〉 , ã ′0 0 = T 2(λ2+Φ(0)−Φ(q)) +∞ ∑ k=3 g(k)(ā0) (k − 1)! λk−3 〈 ǫ, (ã1e1(q)+b̃1e2(q)) k−1 〉 . Let F (w̃) be a nonlinear operator given by the right-hand part of system (16), then this system turns into z̃ = F (w̃) . (17) 7 N.S.Gonchar, H.G.Hajduk Theorem 1. Let min l |Φ(lq)− Φ(q)| = δ > 0, l = 0, 2, 3, 4, · · · , N − 1, N, and λ0 > 0 satisfy the inequality max l T |λ2 +Φ(lq)− Φ(q)| (2N − 1)λ +∞ ∑ k=3 |g(k)(ā0)| (k − 2)! × λk−3((2N − 1)Aλ+ 2A)k−2 < 1, then for all λ ∈ [0, λ0] and ã1, b̃1, h such that ã21 + b̃21 6 A2, |h| < |Φ(0)|, there exist critical temperature T0(h) and interval (T0(h) − λ2, T0(h)) on which the solution of nonlinear equations (17) exists, being a continuously differentiable function of λ ∈ [0, λ0] and ã1, b̃1 for ã21 + b̃21 6 A2. Proof. Operator F maps radius A ball-centred at the point z0 = F (λ, {0, 0}, ã1, b̃1) into itself if the inequality ‖F (λ, {ã, b̃}, ã1, b̃1)− F (λ, {0, 0}, ã1, b̃1)‖ 6 αA, α < 1, (18) holds. Let’s estimate the difference ‖F (p) l (λ, {ã, b̃}, ã1, b̃1)− F (p) l (λ, {0, 0}, ã1, b̃1)‖ 6 T |λ2 +Φ(lq)− Φ(q)| +∞ ∑ k=3 |g(k)(ā0)| (k − 1)! λk−3 × ∣ ∣ ∣ 〈 ǫ, ( (·)k−1 − (ã1e1(q) + b̃1e2(q)) k−1 ) ep(lq) 〉 ∣ ∣ ∣ , p = 0, 1, 2, l = 0, 2, N. From this ‖F (p) l (λ, {ã, b̃}, ã1, b̃1)− F (p) l (λ, {0, 0}, ã1, b̃1)‖ 6 max l T |λ2 +Φ(lq)− Φ(q)| +∞ ∑ k=3 |g(k)(ā0)| (k − 1)! λk−3 ×λ(2N − 1)A k−2 ∑ i=0 (λ(2N − 1)A)k−2−i (2A)i 6 max l T |λ2 +Φ(lq)− Φ(q)| λ(2N − 1)A 8 Modulated structures in the ANNNI model × +∞ ∑ k=3 |g(k)(ā0)| (k − 2)! λk−3 (λ(2N − 1)A+ 2A)k−2 . At last one can estimate the difference ‖F (λ, {ã′, b̃′}, ã1, b̃1)− F (λ, {ã, b̃}, ã1, b̃1)‖ 6 max l T |λ2 + Φ(lq)− Φ(q)| × +∞ ∑ k=3 |g(k)(ā0)| (k − 2)! λk−3λ(2N − 1) (λ(2N − 1)A+ 2A)k−2 ‖{ã′, b̃′} − {ã, b̃}‖. Therefore, choosing a rather small λ we realize the inequality max l T |λ2 +Φ(lq)− Φ(q)| (2N − 1)λ +∞ ∑ k=3 |g(k)(ā0)| (k − 2)! ×λk−3((2N − 1)Aλ+ 2A)k−2 < 1, that guarantees inequality (18) and contractivity conditions for nonlinear map F . If ã1 and b̃1 are such that ã21 + b̃21 6 A2, then inequality (18) holds. This ends the proof. The similar theorem is valid for rational q. Remark 1. Continuous differentiability with respect to the variables λ and ã1, b̃1 results from the continuous differentiability of the successive approximations and their uniform convergence to the solution. Theorem 2. For all the irrational q that guarantee the validity of min l |Φ(lq)− Φ(q)| = δ > 0, l = 0, 2, 3, 4, · · · , N − 1, N, there is such λ1 > 0, that system (10) is solvable for 0 < λ < λ1, |h| < |Φ(0)|. The action of group G (5) on this solution gives different solutions of system (10) being continuously differentiable functions of λ. Proof. Having calculated the averages, Is,m = 〈 s ∏ k=1 e1(ikq) m ∏ l=1 e2(jlq), ǫ 〉 entering equations (13) by formula [5] Is,m =        0, m = 2M + 1, M = 0, 1, 2, · · · , (−1)M2−s−m ∑ t k′ =±i k′ τl=±jl δt1+···+ts+τ1+···+τm,0(−1)k, m = 2M, 9 N.S.Gonchar, H.G.Hajduk where k is the number of negative τl, we write system (13) as ã1=T ( g(3)(ā0) 2 ( ã2ã1+b̃2b̃1 2 +ã′0ã1 ) + g(4)(ā0) 16 ( ã31+ã1b̃ 2 1 ) +λ2ϕ̃ (1) 1 (w̃) ) , b̃1=T ( g(3)(ā0) 2 ( b̃2ã1−ã2b̃1 2 +ã′0b̃1 ) + g(4)(ā0) 16 ( b̃31+b̃1ã 2 1 ) +λ2ϕ̃ (2) 1 (w̃) ) , where g(3)(ā0) = 4ā0 (1− ā20) 2 , g(4)(ā0) = 4 (1− ā20) 2 + 16ā20 (1− ā20) 3 . For the zero approximation, solutions for ã′0, ã2 and b̃2 are ã ′0 0 = Tg(3)(ā0) ( ã21 + b̃21 ) 8(λ2 + Φ(0)− Φ(q)) , ã02 = Tg(3)(ā0) ( ã21 − b̃21 ) 8(λ2 + Φ(2q)− Φ(q)) , b̃02 = Tg(3)(ā0)ã1b̃1 4(λ2 + Φ(2q)− Φ(q)) . Due to the continuous transformation group G (5), the branching equation has the form [7] T ( D ( ã21 + b̃21 ) + λ2ϕ̃0(λ, ã 2 1 + b̃21) ) = 1, (19) where D = T ā20 (1− ā20) 4 ( 1 2(λ2 + Φ(2q)− Φ(q)) + 2 λ2 +Φ(0)− Φ(q) ) + ā20 (1− ā20) 3 + 1 4(1− ā20) 2 . In terms of u = ã21 + b̃21 equation (19) becomes u = ( 1/T − λ2ϕ̃0(λ, u) ) /D, (20) where ϕ̃0(λ, u) is a continuously differentiable function of all the variables in the vicinity of |λ| < λ0, 0 6 u 6 2A2. The inequalities sup 06u62A2 D−1 ∣ ∣T−1 − λ2ϕ̃0(λ, u) ∣ ∣ < 2A2, (21) sup 06u62A2 λ2D−1 |∂ϕ̃0(λ, u)/∂u| < 1 10 Modulated structures in the ANNNI model hold for a rather small λ and 2A2 > 1/TD. From inequalities (21) it follows that equation (20) has the solution, which is a continuously differentiable function of λ for rather small λ < λ1. This ends the proof. Theorem 3. For those rational q, for which N1 6= 3, there is λ0 > 0 such that a nonzero solution to system (9) exists for 0 < λ < λ0, |h| < |Φ(0)|. The action of group (3) on this solution gives different solutions to system (9) being continuously differentiable functions of λ. Proof. Similarly to the case of irrational q, one can prove that the problem of the existence of a nonzero solution to system (9) is equivalent to that of branching equation [8]. To derive branching equations for different values of period N1 we calculate the averages Is,m entering system (6) by formula [5] Is,m =        0, m = 2M + 1, M = 0, 1, 2, · · · , (−1)M2−s−m ∑ r=0,±1,±2,··· ∑ t k′ =±i k′ τl=±jl δt1+···+ts+τ1+···+τm,|r|N1 (−1)k, m = 2M, where k is the number of negative τl. For N1 = 2 we obtain a single branching equation ã1 = T ( g(4)(ā0)ã 3 1/6 + λ2ϕ̃ (2) 1 (λ, ã21)ã1 ) /2. (22) There are small solutions of equation (22) which are continuously differentiable functions of λ. For N1 = 3 the branching equations are ã1 = T ( ã1 ( ã21 + b̃21 ) (( g(3)(ā0) 4 )2 T λ2 +Φ(0)− Φ(q) g(4)(ā0) 16 ) + g(3)(ā0) 8λ ( ã21 − b̃21 ) + λϕ (3) 1 (λ, ã1, b̃ 2 1) ) , (23) b̃1 = T ( b̃1 ( ã21 + b̃21 ) (( g(3)(ā0) 4 )2 T λ2 + Φ(0)− Φ(q) + g(4)(ā0) 16 ) − g(3)(ā0) 4λ b̃1ã1 + λϕ (3) 2 (λ, ã1, b̃ 2 1)b̃1 ) . System (23) has no small solutions for a rather small λ. As a result, branching from the paramagnetic phase to the commensurate one of period N1 = 3 does not occur in the magnetic field. For N1 = 4 (antiphase) the branching equations are ã1 = T [ ã1 ( g(3)(ā0) 2 )2 T 2 ( ã21 − b̃21 λ2 +Φ(2q)− Φ(q) + ã21 + b̃21 2(λ2 + Φ(0)− Φ(q)) ) 11 N.S.Gonchar, H.G.Hajduk + g(4)(ā0) 12 ã31 + λ2ϕ (4) 1 (λ, ã1, b̃ 2 1) ] , (24) b̃1 = T [ b̃1 ( g(3)(ā0) 2 )2 T 2 ( ã21 + b̃21 2(λ2 +Φ(0)− Φ(q)) − ã21 − b̃21 λ2 + Φ(2q)− Φ(q) ) + g(4)(ā0) 12 b̃31 + λ2ϕ (4) 2 (λ, ã1, b̃ 2 1)b̃1 ] . For N1 = 5 the branching equations are ã1 = T [ ã1 ( ã21 + b̃21 ) D̃ + λϕ (5) 1 (λ, ã1, b̃ 2 1) ] , (25) b̃1 = T [ b̃1 ( ã21 + b̃21 ) D̃ + λϕ (5) 2 (λ, ã1, b̃ 2 1)b̃ 2 1 ] , where D̃=T ( g(3)(ā0) 4 )2( 1 2(λ2+Φ(2q)−Φ(q)) + 1 λ2+Φ(0)−Φ(q) ) + g(4)(ā0) 16 . If N1 > 6, then the branching equations are ã1 = T [ ã1 ( ã21 + b̃21 ) D̃ + λ2ϕ (N1) 1 (λ, ã1, b̃ 2 1) ] , (26) b̃1 = T [ b̃1 ( ã21 + b̃21 ) D̃ + λ2ϕ (N1) 2 (λ, ã1, b̃ 2 1)b̃ 2 1 ] . One essential distinction occurs, namely, the second equation allows a zero solution, but the first one assumes a nonzero solution with respect to ã1. We denote ϕ̃ (N1) 1 (t, ã1) = ϕ (N1) 1 (t, ã1, 0) ã1 , ϕ̃ (N1) 1 (t, 0) = 0. Considering ã1 6= 0 and dividing by it, we obtain the equation ã1 = ± √ D̃−1 ( T−1 − λ2ϕ̃ (N1) 1 (λ, ã1) ) . (27) For A > 1/ √ D̃T and a positive sign we have ã1 = √ D̃−1 ( T−1 − λ2ϕ̃ (N1) 1 (λ, ã1) ) . (28) From the conditions sup ã16A √ D̃−1 ( T−1 − λ2ϕ̃ (N1) 1 (λ, ã1) ) 6 A, (29) sup ã1≤A λ2T ∣ ∣ ∣ d dã1 ϕ̃ (N1) 1 (λ, ã1) ∣ ∣ ∣ D̃ √ D̃−1 ( T−1 − λ2ϕ̃ (N1) 1 (λ, ã1) ) < 1 12 Modulated structures in the ANNNI model it follows that (28) has a unique solution for rather small 0 < λ < λ0. Taking the minus sign in equation (27), one obtains an alternate nonzero so- lution. References 1. Villain J. La structure des substances magnetiques. // J. Phys. Chem. Solids, 1959, vol. 11, p. 303–309. 2. Kaplan T.A. Classical spin-configuration stability in the presence of competing ex- change forces. // Phys. Rev., 1959, vol. 116, p. 888–889. 3. Gonchar N.S., Kozyrski W.H. Hidden symmetry and small branchings in the anisotropic model. // Ukr. Math. J., 1991, vol. 43, No 11, p. 1509–1516 (in Ukrainian). 4. Gonchar N.S., Hajduk H.G., Kozyrski W.H. Branching equations for commensurate phase of the ANNNI model. Preprint ITP–95–2U, Kiev, 1995 (in Ukrainian). 5. Gonchar N.S., Kozyrski W.H. Incommensurate phases. Preprint ITP–90–51R, Kiev, 1990 (in Russian). 6. Gonchar N.S., Kozyrski W.H. One-parameter symmetry group of incommensurate phases of the ANNNI model. // Ukr. Fiz. Zhurn., 1991, vol. 36, No 12, p. 1857–1864 (in Ukrainian). 7. Gonchar N.S., Hajduk H.G. Phase transition in the ANNNI model in the presence of external magnetic field. Preprint ITP–94–31U, Kiev, 1994 (in Ukrainian). 8. Hajduk H.G. Branching equations for commensurate phases of the ANNNI model in the presence of external magnetic field. Preprint ITP–95–22U, Kiev, 1995 (in Ukrainian). 13 N.S.Gonchar, H.G.Hajduk Модульовані структури поблизу критичності в моделі ANNNI з зовнішнім магнітним полем М.С.Гончар, І.Г.Гайдук Відділ математичного моделювання Інституту теоретичної фізики ім. М.М.Боголюбова НАН України, 252143 Київ, вул. Метрологічна 14 b Отримано 3 грудня 1997 р. Знайдено умови фазового переходу із парамагнітного стану до мо- дульованої структури в класі анізотропних моделей Ізінга з зовнішнім магнітним полем. Обчислено значення критичного магнітного поля. Отримані рівняння галуження та доведені теореми про малі галужен- ня для співмірних та неспівмірних конфігурацій. Ключові слова: анізотропна модель Ізінга, фазовий перехід, парамагнітна фаза, співмірна конфігурація, неспівмірна конфігурація, критичне магнітне поле PACS: 05.50.+q, 64.60.Cn 14