The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies

X-ray luminosities and spectral indices of 97 bright Seyfert 1 (Sy1) galaxies from the XMM-Newton archive are analysed in this article. Distribution of these values is random, so we conclude that the model of emission should be at least two-parametric. Within the framework of the merging model of ac...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Sadova, V.A., Tugay, A.V.
Формат: Стаття
Мова:English
Опубліковано: Головна астрономічна обсерваторія НАН України 2015
Назва видання:Advances in Astronomy and Space Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/119936
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies / V.A. Sadova, A.V. Tugay // Advances in Astronomy and Space Physics. — 2015. — Т. 5., вип. 2. — С. 79-83. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119936
record_format dspace
spelling irk-123456789-1199362017-06-11T03:03:50Z The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies Sadova, V.A. Tugay, A.V. X-ray luminosities and spectral indices of 97 bright Seyfert 1 (Sy1) galaxies from the XMM-Newton archive are analysed in this article. Distribution of these values is random, so we conclude that the model of emission should be at least two-parametric. Within the framework of the merging model of active galactic nuclei (AGN), the relation between black hole mass, stage of merging and observable X-ray parameters is roposed. 2015 Article The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies / V.A. Sadova, A.V. Tugay // Advances in Astronomy and Space Physics. — 2015. — Т. 5., вип. 2. — С. 79-83. — Бібліогр.: 22 назв. — англ. 2227-1481 DOI:10.17721/2227-1481.5.79-83 http://dspace.nbuv.gov.ua/handle/123456789/119936 en Advances in Astronomy and Space Physics Головна астрономічна обсерваторія НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description X-ray luminosities and spectral indices of 97 bright Seyfert 1 (Sy1) galaxies from the XMM-Newton archive are analysed in this article. Distribution of these values is random, so we conclude that the model of emission should be at least two-parametric. Within the framework of the merging model of active galactic nuclei (AGN), the relation between black hole mass, stage of merging and observable X-ray parameters is roposed.
format Article
author Sadova, V.A.
Tugay, A.V.
spellingShingle Sadova, V.A.
Tugay, A.V.
The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies
Advances in Astronomy and Space Physics
author_facet Sadova, V.A.
Tugay, A.V.
author_sort Sadova, V.A.
title The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies
title_short The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies
title_full The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies
title_fullStr The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies
title_full_unstemmed The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies
title_sort luminosity - spectral index dependence of the x-ray bright seyfert galaxies
publisher Головна астрономічна обсерваторія НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/119936
citation_txt The luminosity - spectral index dependence of the X-ray bright Seyfert galaxies / V.A. Sadova, A.V. Tugay // Advances in Astronomy and Space Physics. — 2015. — Т. 5., вип. 2. — С. 79-83. — Бібліогр.: 22 назв. — англ.
series Advances in Astronomy and Space Physics
work_keys_str_mv AT sadovava theluminosityspectralindexdependenceofthexraybrightseyfertgalaxies
AT tugayav theluminosityspectralindexdependenceofthexraybrightseyfertgalaxies
AT sadovava luminosityspectralindexdependenceofthexraybrightseyfertgalaxies
AT tugayav luminosityspectralindexdependenceofthexraybrightseyfertgalaxies
first_indexed 2025-07-08T16:56:18Z
last_indexed 2025-07-08T16:56:18Z
_version_ 1837098630610157568
fulltext The luminosity � spectral index dependence of the X-ray bright Seyfert galaxies V.A. Sadova, A.V.Tugay∗ Advances in Astronomy and Space Physics, 5, 79-83 (2015) V.A. Sadova, A.V.Tugay, 2015 Taras Shevchenko National University of Kyiv, Glushkova ave., 4, 03127, Kyiv, Ukraine X-ray luminosities and spectral indices of 97 bright Seyfert 1 (Sy1) galaxies from the XMM-Newton archive are analysed in this article. Distribution of these values is random, so we conclude that the model of emission should be at least two-parametric. Within the framework of the merging model of active galactic nuclei (AGN), the relation between black hole mass, stage of merging and observable X-ray parameters is proposed. Key words: X-rays: galaxies, galaxies: Seyfert introduction The XMM-Newton observation archive is the largest and the most convenient database for the analysis of the X-ray spectra of any celestial bod- ies including the extragalactic ones. The Xgal sam- ple of X-ray galaxies [15, 18] contains more than 4000 XMM sources associated with the galaxies or galaxy clusters. The main goal of compiling Xgal was the study of the large-scale structure (LSS) of the Universe in the X-ray band (0.2�15 keV for XMM- Newton). The distribution of the main elements of LSS � �laments, voids and walls � can be recov- ered for the redshifts up to 0.2 [14, 17]. It was shown in [16, 19] that the most frequent type of X-ray emit- ting galaxies at such distances is the Seyfert 1 (Sy1). The spectra of the Sy1 galaxies in the Sloan Digi- tal Sky Survey (SDSS) region were analysed in [16]. 30 of them are Compton thin (NH < 1025 cm−2) and thus their spectra can be correctly �tted with the power law model. The remaining X-ray bright Sy1 galaxies with the radial velocities from 4000 to 39000 km/s are studied in present work. We com- piled a list of the most powerful X-ray galaxies in the nearby Universe � the Compton thin Sy1 galaxies. Our goal was to calculate the spectral parameters of these galaxies, to build their distributions and to identify some realistic connection between the ob- served spectral parameters and the properties of the internal structure of AGNs. sample selection and X-ray spectral analysis The statistics of the galaxies considered in this work is the following. There are 582 bright X-ray ex- tragalactic sources outside of the SDSS region. 87 of them are Sy1. The resulting list of bright Sy1 galax- ies from the Xgal sample consists of three parts: 1. 30 Sy1 galaxies in the SDSS region, for which the spectral parameters were obtained previously in [16]. 2. 23 galaxies with the spectra built in the present work using the standard XMM SAS package. We get event lists for the PN camera with the epproc proce- dure, �ltered them from the solar protons using the parameters 150 < PI < 15000 and PATTERN=0 and derived the spectra with the especget procedure. Background region was selected from the same CCD chip as the source and of the same size. 3. 46 galaxies with the spectra found in the lit- erature. 33 of them were from CAIXA (Catalog of AGNs in the XMM-Newton Archive [3]). Fig. 1: X-ray parameters of the Sy1 galaxies analysed here. The lower, long-dashed line marks the mass of the central black hole MBH = 107M⊙; for the upper, short-dashed line the black hole mass is 109M⊙. The parameters of the Sy1 galaxies from p.2 and p.3, except for the CAIXA entries, are presented in ∗tugay.anatoliy@gmail.com 79 Advances in Astronomy and Space Physics V.A. Sadova, A.V.Tugay Tables 1 and 2. The main observable parameters of the X-ray emission are the luminosity and the spec- tral index. In most cases of the Compton thin Sy1 galaxies these are the only parameters that can be �tted correctly. The distribution of these parame- ters is presented in Fig. 1. Another important spec- tral feature in the 2�15 keV energy band is the iron emission line at 6.5 keV, but it is rarely detected, so we do not consider it here. Also we �nd two galaxies where the thermal component dominates the emis- sion: 2E1891 and IRAS05218-1212. We found the best-�t blackbody temperatures of 1.11 ± 0.03 keV and 2.37 ± 0.13 keV for these galaxies respectively. The power law component was not �tted correctly for these galaxies, so they were excluded from fur- ther analysis. interpretation of the X-ray luminosity and spectral index The previously analysed parameters should be connected to some intrinsic parameters of the AGNs. In the model of Hopkins et al. [8] an AGN appears as a result of the collision and merger of two galaxies. Di�erent observable features of that AGN can be in- terpreted as stages of merging. This model suggests a simple relation of the photon index and the time since the collision: Γ = log(t/106years). It was assumed here that at large times after merger the hard X-ray emission decreases that could appear as an increase of the spectral index. Since the central engine of an AGN is assumed to be a supermassive black hole in its centre, the luminosity of that AGN should correlate with the black hole mass. Taking into account the decrease of the luminosity with the age, the following formula for estimating the black hole mass is proposed: log(MBH/M⊙) = logLX + Γ−A, (1) where LX is measured in erg/s. The physical mean- ing of Eq. (1) lies in the assumption that the total amount of the emitted energy (LX · t) should be re- lated to the total energy budget of the source (or the mass of the available gas, which should be pro- portional to MBH). This relation, however, has not yet been veri�ed and may have unclear systematical uncertainty behind. The coe�cient A = 37.375 was selected to equalise the average black hole mass with the results of a similar work of Vestergaard & Peter- son [21] (hereafter VP), where the black hole masses for AGNs were also estimated from the X-ray emis- sion. The averaged logarithm of the black hole mass in [21] and for our sample equals (the uncertainty corresponds to the 1σ con�dence level): log(MBH/M⊙) = 7.992± 0.562. (2) The two lines corresponding to the black hole mass of 107M⊙ and 109M⊙ are shown in Fig. 1. The derived in this way masses of the central black holes of individual galaxies are presented in the last col- umn of Table 2. The uncertainty of log(MBH/M⊙) depends on the uncertainties of Γ, LX and the sys- tematic e�ects. According to Eq. (2), this uncer- tainty should be approximately equal to 0.5 or less. The black hole mass distributions for our sample and VP galaxies were approximated by Gaussian. Devi- ation for the Xgal Sy1 galaxies appears somewhat larger than in [21] � σ = 0.826. This value is po- tentially biased, as here we study solely the X-ray bright objects, whereas the VP sample, based on the optical data, includes both the X-ray bright and dim sources. The distributions of the black hole masses for our sample and the VP results are presented in Table 3. The percentage of the normal Gaussian dis- tribution is also given for the comparison. The bin width is equal to one standard deviation. conclusion and discussion The distribution of the X-ray emission parame- ters in Fig. 1 is random, so we conclude that the emission model of the studied galaxies should be at least two-parametric. We propose to consider the black hole mass and the merging stage as such in- trinsic model parameters. The dependence of the X-ray spectral index on the X-ray luminosity was recently found in [22]. The authors considered the dependence of Γ on LX/LEdd ratio and interpreted this dependence as a two-phase advection dominated accretion. In such study LEdd and the black hole mass should be estimated independently from lumi- nosity (for the method of the MBH estimation based on the AGN X-ray emission see, e. g. [9]). This is possible if the data on the X-ray variability are available and the same source shows di�erent val- ues of Γ and LX/LEdd in the series of observations. The major part of Xgal objects has only one XMM observation available and all the X-ray lightcurves for our Sy1 galaxies are constant. So we can not consider Γ(LX/LEdd) dependence and conclude here that there is no signi�cant dependence of Γ on LX. acknowledgement This work was performed at VIRGO.UA. The authors are thankful to the ISDC High-Energy Astrophysics Data Centre for developing the Ukrainian Virtual Roentgen and Gamma Observa- tory. A.Tugay thanks to anonymous referee for use- ful comments. references [1] BallantyneD.R., FabianA.C. & IwasawaK. 2004, MN- RAS, 354, 839 [2] BallantyneD.R. 2005, MNRAS, 362, 1183 80 Advances in Astronomy and Space Physics V.A. Sadova, A.V.Tugay [3] Bianchi S., BonillaN. F., GuainazziM., MattG. & PontiG. 2009, A&A, 501, 915 [4] CorralA., BarconsX., Carrera F. J., CeballosM.T. & Mateos S. 2005, A&A, 431, 97 [5] Croston J.H., HardcastleM. J., BirkinshawM. & Wor- rall D.M. 2003, MNRAS, 346, 1041 [6] Gallo L.C., Lehmann I., PietschW. et al. 2006, MNRAS, 365, 688 [7] HardcastleM. J., Sakelliou I. & Worrall D.M. 2005, MN- RAS, 359, 1007 [8] HopkinsP. F., Hernquist L., CoxT. J. & Kere²D. 2008, ApJS, 175, 356 [9] Jang I., GliozziM., HughesC. & TitarchukL. 2014, MN- RAS, 443, 72 [10] LewisK.T., EracleousM., GliozziM., SambrunaR.M. & MushotzkyR. F. 2005, ApJ, 622, 816 [11] SambrunaR.M., Reeves J.N. & BraitoV. 2007, ApJ, 665, 1030 [12] SinghV., Shastri P. & Risaliti G. 2011, A&A, 532, A84 [13] Torresi E., Grandi P., Longinotti A. L. et al. 2010, MN- RAS, 401, L10 [14] TugayA.V. 2013, Advances in Astronomy and Space Physics, 3, 116 [15] TugayA.V. 2012, Odessa Astronomical Publications, 25, 142 [16] TugayA.V. 2013, Astronomical School's Report, 9, 64 [17] TugayA.V. 2014, Advances in Astronomy and Space Physics, 4, 42 [18] TugayA.V. 2014, IAU Symp., 304, 168 [19] TugayA.V. & VasylenkoA.A. 2011, Odessa Astronom- ical Publications, 24, 72 [20] VasylenkoA.A., ZhdanovV. I. & FedorovaE.V. 2015, Ap&SS, 360, 37 [21] VestergaardM. & PetersonB.M. 2006, ApJ, 641, 689 [22] YangQ.-X., Xie F.-G., YuanF. et al. 2015, MNRAS, 447, 1692 81 Advances in Astronomy and Space Physics V.A. Sadova, A.V.Tugay Table 1: General parameters of the new Seyfert 1 galaxies added to the analysis. The rest of the sample see in [16]. u is the u-band apparent magnitude; r is a major semiaxis of the 25m/′′ contour; V3K is the radial velocity in the CMB reference frame. The parameters were taken from the Hyperleda database. N Name RA, deg DEC, deg Coord. num. u r, arcsec V3K , km/s 1 2MASX J00044124+0007113 1.1718 0.1198 0004+0007 18.63 6.3 31923 2 ESO 540-1 8.5571 −21.4389 0034-2126 13.71 37.8 7744 3 2MASX J00440466+0101531 11.0195 1.0313 0044+0101 17.77 9.3 33210 4 2MASX J00565517-7513524 14.2297 −75.2312 0056-7513 15.04 6.4 22137 5 Mrk 993 21.3812 32.1360 0125+3208 14.37 47.6 4380 6 3C 59 31.7590 29.5128 0207+2930 17.44 11.1 32612 7 UGC 1841 35.7989 42.9914 0223+4259 13.75 65.7 6167 8 2MASX J02491286-0815254 42.3036 −8.2571 0249-0815 16.64 14.0 8617 9 ESO 359-19 61.2570 −37.1876 0405-3711 15.52 17.3 16476 10 3C 111 64.5885 38.0266 0418+3801 19.75 10.0 15305 11 Mrk 1506 68.2962 5.3542 0433+0521 15.06 23.3 9839 12 ESO 15-11 68.8183 −78.0323 0435-7801 15.58 20.3 18351 13 RBS 560 69.3672 −47.1916 0437-4711 16.61 7.4 15574 14 UGC 3142 70.9449 28.9718 0443+2858 15.84 28.0 6434 15 Pictor A 79.9570 −45.7789 0519-4546 16.25 14.7 10516 16 IRAS 05218-1212 81.0288 −12.1693 0524-1210 15.70 7.6 14721 17 2E 1644 95.7820 −64.6060 0623-6436 17.06 15.0 36197 18 2MASX J07185777+7059209 109.7410 70.9891 0719+7059 17.40 5.9 19810 19 2E 1891 119.5000 39.3414 0754+3928 15.21 2.0 28935 20 Sextans Ring 150.5010 −8.1614 0959-0809 15.22 13.0 4910 21 MCG +11-19-030 239.2650 63.8408 1557+6350 15.42 20.8 9000 22 2MASX J16115141-6037549 242.9640 −60.6319 1611-6037 14.70 26.7 4777 23 2MASX J16174561+0603530 244.4400 6.0649 1617+0603 16.19 14.4 11479 24 Mrk 883 247.4700 24.4439 1629+2426 15.78 18.1 11447 25 2E 4097 278.7640 32.6964 1835+3241 15.15 21.2 17289 26 FRL 339 302.9930 −57.0868 2011-5705 16.12 14.4 16274 27 4C 74.26 310.6560 75.1341 2042+7508 15.33 2.0 31071 28 Mrk 509 311.0410 −10.7235 2044-1043 13.35 17.7 10045 29 2MASX J21022164+1058159 315.5900 10.9711 2102+1058 14.92 12.6 8336 30 2MASX J22191855+1207531 334.8270 12.1315 2219+1207 17.19 8.3 24229 31 3C 445 335.9570 −2.1036 2223-0206 17.26 8.9 16510 32 NGC 7469 345.8150 8.8739 2303+0852 12.90 41.4 4545 33 NGC 7589 349.5650 0.2612 2318+0015 15.23 28.7 8578 34 NGC 7603 349.7360 0.2440 2318+0014 14.04 36.1 8484 35 NGC 7720 354.6230 27.0317 2338+2701 13.43 45.4 8695 36 MCG -05-01-013 359.3665 −30.4613 2357-3027 14.96 16.9 8744 82 Advances in Astronomy and Space Physics V.A. Sadova, A.V.Tugay Table 2: X-ray parameters of the studied Sy1 galaxies. FX is the X-ray �ux in the 2�10 keV band in units of 10−14 erg/s/cm−2; LX40 is the X-ray luminosity in the redshift space, computed for H = 70 km/s/Mpc and divided by 1040 erg/s; Γ is the spectral index; NH is the neutral hydrogen column density; for the spectra �tted in this work the χ2/d.o.f. value is given instead of the reference. N Target FX ∆FX LX40 Γ ∆Γ NH , 10 20cm−2 Ref. log(MBH/M⊙) 1 0004+0007 45.6 1.9 1080 1.840 0.098 0.013±0.011 28.46/29 7.873 ±0.233 2 0034-2126 80.1 2.2 112 1.440 0.100 [6] 6.489 ±0.235 3 0044+0101 110.5 8.7 2831 1.806 0.174 0.063±0.027 74.98/34 8.258 ±0.309 4 0056-7513 557.0 14.6 6339 2.118 0.056 0.046±0.008 113.13/61 8.920 ±0.191 5 0125+3208 216.6 3.4 96 1.710 0.060 0.07±0.01 [4] 6.694 ±0.195 6 0207+2930 1434.4 4.5 35428 1.398 0.006 0.0013±0.0007 4765.6/998 8.947 ±0.141 7 0223+4259 50.4 1.4 45 0.870 0.200 [5] 5.518 ±0.335 8 0249-0815 65.3 4.2 113 2.041 0.151 0.013±0.015 18.07/23 7.094 ±0.286 9 0405-3711 612.4 7.9 3861 1.764 0.019 0±0.006 28.12/17 8.351 ±0.154 10 0418+3801 8202.2 17.5 44619 1.700 0.020 0.8 [10] 9.349 ±0.155 11 0433+0521 8159.1 16.0 18343 1.860 0.010 0.01±0.001 [1] 9.122 ±0.145 12 0435-7801 251.9 4.2 1970 1.894 0.050 0.051±0.008 78.48/65 8.188 ±0.185 13 0437-4711 1203.9 5.6 6781 2.247 0.097 0±0.001 598.7/248 9.078 ±0.232 14 0443+2858 2179.5 16.2 2095 0.985 0.029 1.217±0.045 498.34/211 7.307 ±0.164 15 0519-4546 1784.9 4.7 4584 1.800 0.010 0.03±0.01 [20] 8.461 ±0.145 16 0524-1210 454.4 8.6 2287 9.500 9.900 0.909±0.464 143.54/28 - 17 0623-6436 818.0 8.4 24890 2.034 0.025 0.021±0.003 246.18/213 9.430 ±0.160 18 0719+7059 147.5 12.3 1344 1.971 0.235 0.024±0.045 2.15/5 8.098 ±0.490 19 0754+3928 382.1 5.0 7429 7.372 0.621 0.234±0.043 396.04/40 - 20 0959-0809 1078.5 6.7 604 2.432 0.023 0.066±0.002 783.18/540 8.213 ±0.158 21 1557+6350 50.7 6.0 95 2.082 0.206 0±0.072 5.77/5 7.061 ±0.476 22 1611-6037 907.8 27.7 481 1.712 0.059 0.131±0.016 67.21/56 7.394 ±0.194 23 1617+0603 1596.9 14.6 4887 1.957 0.017 0.021±0.002 535.78/495 8.646 ±0.152 24 1629+2426 287.9 4.2 876 1.689 0.054 0.103±0.014 53.73/57 7.632 ±0.189 25 1835+3241 6930.5 24.1 48110 2.150 0.180 3±1 [13] 9.832 ±0.315 26 2011-5705 296.9 3.8 1826 2.576 0.062 0.039±0.006 94.80/67 8.838 ±0.197 27 2042+7508 3857.2 10.0 86479 1.860 0.010 0.183 [2] 9.797 ±0.145 28 2044-1043 8290.5 10.2 19427 1.970 0.010 0.27±0.01 [20] 9.258 ±0.145 29 2102+1058 154.8 17.6 250 1.736 0.108 0.131±0.025 28.12/17 7.134 ±0.376 30 2219+1207 466.2 4.1 6356 3.099 0.019 0.074±0.002 523.61/233 9.902 ±0.154 31 2223-0206 875.2 12.0 5540 1.4 0.1 1 � 10 [11] 8.143 ±0.235 32 2303+0852 5311.5 14.5 2548 1.980 0.010 45±2 [20] 8.387 ±0.145 33 2318+0015 71.2 2.7 122 1.768 0.093 0.036±0.021 11.84/21 6.854 ±0.228 34 2318+0014 4597.2 32.9 7685 2.280 0.030 14.8±5.6 [12] 9.165 ±0.165 35 2338+2701 62.9 12.1 110 2 0.5 0.5±0.2 [7] 7.041 ±0.905 36 2357-3027 1060.8 46.5 1884 2.455 0.028 0.096±0.002 401.5/302 8.729 ±0.163 Table 3: Distribution of the black hole masses. The intervals are measured in standard deviations. Interval < −3 (−3,−2) (−2,−1) (−1, 0) (0, 1) (1, 2) (2, 3) > 3 Number of galaxies 1 2 14 28 37 15 0 0 % 1.0 2.1 14.4 28.9 38.1 15.5 0 0 Number of galaxies in [21] 1 0 1 12 13 5 0 0 % 3.1 0 3.1 37.5 40.6 15.6 0 0 Normal distribution. % 0.2 2.1 15.6 32.1 32.1 15.6 2.1 0.2 83