Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters

The detection of an unidentified emission line in the X-ray spectra of cosmic objects would be a `smoking gun'signature for the particle physics beyond the Standard Model. More than a decade of its extensive searches results in several narrow faint emission lines reported at 3.5, 8.7, 9.4 and 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
1. Verfasser: Iakubovskyi, D.A.
Format: Artikel
Sprache:English
Veröffentlicht: Головна астрономічна обсерваторія НАН України 2016
Schriftenreihe:Advances in Astronomy and Space Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119951
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters / D.A. Iakubovskyi // Advances in Astronomy and Space Physics. — 2016. — Т. 6., вип. 1. — С. 3-15. — Бібліогр.: 188 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-119951
record_format dspace
spelling irk-123456789-1199512017-06-11T03:03:42Z Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters Iakubovskyi, D.A. The detection of an unidentified emission line in the X-ray spectra of cosmic objects would be a `smoking gun'signature for the particle physics beyond the Standard Model. More than a decade of its extensive searches results in several narrow faint emission lines reported at 3.5, 8.7, 9.4 and 10.1 keV. The most promising of them is the emission line at ∼3.5 keV reported in spectra of several nearby galaxies and galaxy lusters. Here I summarize its up-to-date status, overview its possible interpretations, including an intriguing connection with the radiatively decaying dark matter, and outline future directions for its studies. 2016 Article Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters / D.A. Iakubovskyi // Advances in Astronomy and Space Physics. — 2016. — Т. 6., вип. 1. — С. 3-15. — Бібліогр.: 188 назв. — англ. 2227-1481 DOI:10.17721/2227-1481.6.3-15 http://dspace.nbuv.gov.ua/handle/123456789/119951 en Advances in Astronomy and Space Physics Головна астрономічна обсерваторія НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The detection of an unidentified emission line in the X-ray spectra of cosmic objects would be a `smoking gun'signature for the particle physics beyond the Standard Model. More than a decade of its extensive searches results in several narrow faint emission lines reported at 3.5, 8.7, 9.4 and 10.1 keV. The most promising of them is the emission line at ∼3.5 keV reported in spectra of several nearby galaxies and galaxy lusters. Here I summarize its up-to-date status, overview its possible interpretations, including an intriguing connection with the radiatively decaying dark matter, and outline future directions for its studies.
format Article
author Iakubovskyi, D.A.
spellingShingle Iakubovskyi, D.A.
Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters
Advances in Astronomy and Space Physics
author_facet Iakubovskyi, D.A.
author_sort Iakubovskyi, D.A.
title Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters
title_short Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters
title_full Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters
title_fullStr Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters
title_full_unstemmed Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters
title_sort observation of the new emission line at ~3.5 kev in x-ray spectra of galaxies and galaxy clusters
publisher Головна астрономічна обсерваторія НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/119951
citation_txt Observation of the new emission line at ~3.5 keV in X-ray spectra of galaxies and galaxy clusters / D.A. Iakubovskyi // Advances in Astronomy and Space Physics. — 2016. — Т. 6., вип. 1. — С. 3-15. — Бібліогр.: 188 назв. — англ.
series Advances in Astronomy and Space Physics
work_keys_str_mv AT iakubovskyida observationofthenewemissionlineat35kevinxrayspectraofgalaxiesandgalaxyclusters
first_indexed 2025-07-08T16:57:06Z
last_indexed 2025-07-08T16:57:06Z
_version_ 1837098681915932672
fulltext Observation of the new emission line at ∼3.5 keV in the X-ray spe tra of galaxies and galaxy lusters D.A. Iakubovskyi ∗ Advan es in Astronomy and Spa e Physi s, 6, 3-15 (2016) doi: 10.17721/2227-1481.6.3-15 © D.A. Iakubovskyi, 2016 Dis overy Center, Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark Bogolyubov Institute of Theoreti al Physi s, Metrologi hna Str. 14-b, 03680, Kyiv, Ukraine The dete tion of an unidenti�ed emission line in the X-ray spe tra of osmi obje ts would be a `smoking gun' signature for the parti le physi s beyond the Standard Model. More than a de ade of its extensive sear hes results in several narrow faint emission lines reported at 3.5, 8.7, 9.4 and 10.1 keV. The most promising of them is the emission line at ∼3.5 keV reported in spe tra of several nearby galaxies and galaxy lusters. Here I summarize its up-to-date status, overview its possible interpretations, in luding an intriguing onne tion with the radiatively de aying dark matter, and outline future dire tions for its studies. Key words: X-rays: general, dark matter, line: identi� ation introdu tion The origin of the dark matter � the major (yet of unknown origin) gravitating substan e in the Uni- verse [17, 51, 56, 59, 60, 62, 70, 71, 72, 78, 79, 84, 87, 122, 123, 137, 140, 143, 144, 151, 152, 155, 170, 179, 188℄ � still has to be revealed. If the dark matter is made of elementary parti les, the latter should be massive (to form over-densities in pro ess of gravita- tional ollapse), long-lived (to be stable for at least the age of the Universe) and neutral with respe t to strong and ele tromagneti intera tions (to be su�- iently `dark'). The only known massive, long-lived and neutral parti les are the usual (left-handed) neu- trinos, but they are too light to form small dark matter halos [171, 184℄. As a result, the hypothe- sis of the dark matter parti le implies an extension of the Standard Model of parti le physi s. Dozens of the Standard Model extensions have been proposed so far to ontain a valid dark matter parti le andi- date. However, as Fig. 1 from [80℄ demonstrates, the masses of dark matter parti le andidates and their intera tion strengths with Standard Model parti les over a huge region of parameter spa e. This results in a large variety of observational methods developed to sear h for dark matter parti les. The spe i� example onsidered in this review is the radiatively de aying dark matter. If a dark mat- ter parti le intera ts with ele tri ally harged parti- les, it may 1 possess a radiative de ay hannel. If a non-relativisti dark matter parti le de ays to a pho- ton and another parti le, a slight (v/c . 5 × 10−3 ) Doppler broadening due to non-zero velo ities of dark matter parti les in halos would ause a narrow dark matter de ay line. Su h a de ay line possesses several spe i� features allowing to robustly distin t it from the emission lines of astrophysi al origin (see e. g. [64, 164℄) or from instrumental line-like features: � its position in energy is solely determined by the mass of the dark matter parti le and the redshift of the dark matter halo (i. e. if one negle ts the mass of other de ay produ ts, the line position is m dm c2 2(1 + z) ), having di�erent s al- ing with the halo redshift z as the instrumental line-like features; � its intensity is proportional to the dark mat- ter olumn density S dm = ∫ ρ dm dℓ; due to the di�erent 3D distributions of the dark and vis- ible matter, omparison of the new line in- tensity within the given obje t � as well as among among di�erent obje ts � would allow to hoose between its de aying dark matter and astrophysi al origins; � it is broadened with the hara teristi velo ity of the dark matter � di�erent from that of vis- ible matter. ∗ iakubovskyi�nbi.ku.dk 1 The widely-known examples where this is not the ase are the dark matter parti les as the lightest parti les holding a new quantum number onserved by the Standard Model intera tions, su h as R-parity for super-symmetri models, Kaluza-Klein number for extra di- mensions, et . In this ase, the dark matter de ays are stri tly forbidden by the spe ial stru ture of the theory, and the main astrophysi al e�e t for the dark matter parti les is their annihilation with their antiparti les. 3 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi 5 6 7 F lu x ( c n ts s -1 k e V -1 ) -0.2 -0.1 0 0.1 0.2 0.3 R e s id u a ls 3 3.2 3.4 3.6 3.8 4 Energy (keV) 300 305 310 315 E ff . A re a ( c m 2 ) XMM - MOS Perseus (with core) 317 ks Fig. 1: The ombined MOS spe trum of the Perseus lus- ter s aled to the 3-4 keV energy range. On top of the their best-�t model, the series of the single-bin residuals orre- sponding to the extra emission line at 3.57 keV are shown in red. (Adapted from Figure 7 in [45℄). 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 N o r m a l i z e d c o u n t r a t e [ c t s / s e c / k e V ] M31 ON-center No line at 3.5 keV -4⋅10-3 -2⋅10-3 0⋅100 2⋅10-3 4⋅10-3 6⋅10-3 8⋅10-3 1⋅10-2 3.0 3.2 3.4 3.6 3.8 4.0 D a t a - m o d e l [ c t s / s e c / k e V ] Energy [keV] No line at 3.5 keV Line at 3.5 keV Fig. 2: The same as in Figure 1 but for the ombined spe trum of Andromeda galaxy. (Adapted from Figure 1 in [39℄). The above-mentioned hara teristi s allow to di- re tly dete t the radiatively de aying dark matter re- lying on the astrophysi al measurements. This moti- vates the extensive sear h for the new lines in X-ray spe tra of osmi obje ts proposed about 15 years ago [2, 3, 67℄, see Table 1. An example is the analy- sis of the line andidate at ∼2.5 keV initially reported in [112℄ in the X-ray spe trum of the Willman 1 dwarf spheroidal at 2.5σ level. Further non-observation of this line andidate in the entral part and outskirts of the Andromeda galaxy, Fornax and S ulptor dwarf spheroidal galaxies [41℄ ex ludes the de aying dark matter origin of the ∼2.5 keV signal at a high sig- ni� an e level (above 14σ). This result is further strengthened by the authors of [128℄ who reanalysed the same observations of Willman 1 as [112℄ (and did not �nd the ∼2.5 keV line) and the authors of [127℄ who analysed another dwarf spheroidal, Segue 1. Fi- nally, [113℄ ruled out the dark matter origin of the ∼2.5 keV feature by observing Willman 1 with better statisti s. The probable origin of the ∼2.5 keV line, a ording to [41℄, is purely instrumental, being the result of under-modelling of the time-variable soft proton ba kground (see e. g. [106℄) in some observa- tions ombined with an apparent dip at ∼2.5 keV in the e�e tive area of existing X-ray instruments. observational eviden e for the line at ∼3.5 keV The new emission line at ∼3.5 keV was reported by two di�erent groups [39, 45℄ in February 2014. In [45℄, the authors ombine X-ray emission from the sample of nearby galaxy lusters observed by the Eu- ropean Photon and Imaging Camera (EPIC) [167, 172℄ on-board the XMM-Newton X-ray osmi ob- servatory [95℄ with the largest number of ounts (>105 ounts for redshifts z < 0.1 and >104 ounts for redshifts 0.1 < z < 0.4). The sta king is made in the luster's rest frame. As a result, the emis- sion from the instrumental lines is smeared out, while osmi lines appear more prominent. This method allows [45℄ to dete t 28 emission lines of as- trophysi al origin in 2-10 keV band, mu h more than in individual galaxy lusters, see e. g. [61℄. Apart from them, [45℄ identi�es the new line lo ated at 3.57±0.02 keV in XMM-Newton/MOS [167℄ ameras and at 3.51 ± 0.03 keV in XMM-Newton/PN [172℄ amera at the level & 10 larger than predi ted from the two omplexes of nearby astrophysi al emis- sion lines lo ated at 3.51 keV (Kxviii) and 3.62 keV (Arxvii). The new line is also dete ted at > 3σ lo al signi� an e in several di�erent sub-samples of their ombined XMM-Newton/EPIC luster dataset, see e. g. Fig. 1, and in Chandra/ACIS spe trum of Perseus luster, see Table 2 for details. In [39℄ the new line at 3.53± 0.03 keV in the en- tral part of Andromeda galaxy (see Fig. 2) and in the outskirts of Perseus luster is dete ted, see Table 2. [39℄ ex luded the entral part of the Perseus luster (analysed in [45℄) be ause of its rather omplex stru - ture in X-rays, so the two datasets used in [39, 45℄ are totally independent enhan ing the statisti al sig- ni� an e for the new line. Another important result of [39℄ is the radial dependen e of the new line �ux in Perseus that appears more onsistent with the de ay- ing dark matter pro�le than with the astrophysi al emission. 4 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi 1 10 0.01 0.1 Li ne fl ux , 1 0-6 p ho to ns c m -2 s -1 Projected mass density, MSun/pc2 GC M31 Perseus Blank-sky τ DM = 6 x 10 27 s τ DM = 8 x 10 27 s τ DM = 2 x 10 27 s τ DM = 1.8 x 10 28 s 1 10 0.01 0.1 Li ne fl ux , 1 0-6 p ho to ns c m -2 s -1 Projected mass density, MSun/pc2 GC M31 Perseus Blank-sky τ DM = 6 x 10 27 s τ DM = 8 x 10 27 s τ DM = 2 x 10 27 s τ DM = 1.8 x 10 28 s 1 10 0.01 0.1 Li ne fl ux , 1 0-6 p ho to ns c m -2 s -1 Projected mass density, MSun/pc2 GC M31 Perseus Blank-sky τ DM = 6 x 10 27 s τ DM = 8 x 10 27 s τ DM = 2 x 10 27 s τ DM = 1.8 x 10 28 s 1 10 0.01 0.1 Li ne fl ux , 1 0-6 p ho to ns c m -2 s -1 Projected mass density, MSun/pc2 GC M31 Perseus Blank-sky τ DM = 6 x 10 27 s τ DM = 8 x 10 27 s τ DM = 2 x 10 27 s τ DM = 1.8 x 10 28 s Fig. 3: The �ux of the ∼3.5 keV line from the Gala ti Centre, the Perseus luster outskirts, the Andromeda galaxy, and the `blank sky' dataset [39℄ as a fun tion of the dark matter proje ted mass. Diagonal lines show the expe ted behaviour of the de aying dark matter signal for a given dark matter parti le lifetime. The verti al sizes of the boxes are ±1σ statisti al error on the line's �ux � or the 2σ upper bound for the blank-sky dataset. The blue shaded regions show a parti ular Navarro- Frenk-White [132, 133℄ pro�le of the Milky Way [163℄, its horizontal size indi ates un ertainties in the gala ti disk modelling. The lifetime τ dm ∼ (6−8)×1027 s is on- sistent with all datasets. New results from a prolonged Dra o XMM-Newton/EPIC observation [98, 153℄ give ontroversial results: while [98℄ reports an ex lusion of dark matter hypothesis at 99% level, the results of [153℄ laim that the values of τ dm ≃ (7− 9)× 1027 se are still onsistent with all existing observations. (Adapted from Figure 2 in [27℄). The en ouraging results of [39, 45℄ have stimu- lated several groups to look at the other dark matter- dominated obje ts. The following sear hes report the presen e of the line at ∼3.5 keV, see Table 3: 1. The identi� ation of the line at ∼3.5 keV from the region of the Gala ti Centre [27, 49, 97, 145℄. Although it is un lear whether the de- te ted line has an astrophysi al origin (see the next se tion for detailed dis ussion), its expla- nation in terms of de aying dark matter is on- sistent with the previous new line dete tions, see [27, 115℄ for details. 2. The dete tion of the new line in Suzaku/XIS observations of the Perseus, Coma and Ophi- u hus galaxy lusters [173℄. While the subse- quent study of Suzaku/XIS spe tra in [169℄ did not reveal the new line at ∼3.5 keV in the en- tral part of the Perseus luster, another re ent study in [77℄ does; however, its apparent dis- repan y with the negative result of [169℄ is still un lear and has to be resolved further. 3. The dete tion of the new line at 3.52±0.08 keV observed in the X-ray spe tra of 8 individual nearby galaxy lusters in luding Perseus and Coma [93℄. 1 10 0.01 0.1 Li ne fl ux , 1 0-6 p ho to ns c m -2 s -1 Projected mass density, MSun/pc2 τ DM = 6 x 10 27 s τ DM = 2 x 10 27 s τ DM = 1.8 x 10 28 s Fig. 4: The same as in Fig. 3 but over-plotted are the ranges for the > 2σ dete tions in MOS (green) and PN (magenta) ameras, see [93℄. (Adapted from Figure 2 in [93℄). In summary, positive dete tions of the new line listed in Tables 2 and 3 support the hypothesis of the radiatively de aying dark matter implying its life- time is τ dm ≃ (6− 8)× 1027 s [27, 93, 153℄. On the ontrary, the following studies do not de- te t the ∼3.5 keV line putting the upper bounds on its �ux: 1. The entral part of the Virgo luster observed by Chandra/ACIS [45℄, Suzaku/XIS[173℄ and XMM -Newton/EPIC [93℄, as well as other 10 galaxy lusters from [93℄. 2. Combined spe trum from dwarf spheroidal galaxies [120℄. 3. Outskirts of galaxies [9, 39, 91℄. 4. Combined blank-sky observations [39, 159℄. 5. Prolonged XMM-Newton/EPIC observations of the Dra o dwarf spheroidal galaxy [98, 153℄; although [153℄ reports a line-like ex ess at 3.54±0.06 keV with ∆χ2 = 5.3 in PN amera, see Table 2, this �nding is not supported by an independent analysis of [98℄ and is not a om- panied with a similar ex ess in Dra o spe tra seen by MOS amera [98, 153℄. At the moment, it is un lear whether these negative sear hes rule out the de aying dark matter hypoth- esis for this new line. While the bounds obtained in [120℄ are mildly onsistent with the de aying dark 5 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi matter origin of the dete tions in [39, 45℄, the re- sults of [9℄ formally ex lude the de aying dark mat- ter hypothesis of the origin of the ∼3.5 keV line im- posing a very stri t 3σ bound, τ dm > 1.8 × 1028 s. However, taking into a ount the systemati e�e ts in the spe tra (e. g. ausing signi� ant negative residuals) obtained in [9℄ and the apparent un er- tainty in the used dark matter distributions [40℄ would result in mu h weaker bound. For instan e, τ dm & 3.5 × 1027 s is reported in [94℄ using the sta ked dataset of nearby galaxies with ompara- ble exposure from [91℄ � still onsistent with ex- isting dete tions. The un ertainty in the dark mat- ter distributions also helps to re on ile the results of the other negative sear hes [89, 159, 182℄ with the ∼3.5 keV line dete tions using the de aying dark matter paradigm. There is also no larity with the new prolonged (∼ 1.4 Ms) XMM-Newton/EPIC observation of the Dra o dwarf spheroidal galaxy � the obje t having both well-measured dark mat- ter distribution [82℄ and proven low X-ray ba k- ground [99, 115, 120, 146℄. While [98℄ reports an ex- lusion of dark matter hypothesis at 99% level having 2σ upper bound on the radiative dark matter de ay lifetime of τ dm > 2.7 × 1028 s, the results of [153℄ suggest τ dm ≃ (7− 9)× 1027 s � the value still om- patible with all existing observations. �standard� explanations of the line at ∼3.5 keV There are three possible �standard� explanations of the new line dete tions at ∼3.5 keV: 1. statisti al �u tuations; 2. general-type systemati e�e ts; 3. astrophysi al emission line. With re ent in rease of positive dete tions re- ported by [93℄, it is very hard to explain all of the dete tions with pure statisti al �u tuations. Nev- ertheless, statisti al �u tuations may be responsible for the new line dete tions or non-dete tions in some individual obje ts, as well as for variations of the de- te ted line position up to ∼110 eV [93℄, see Fig. 5 � the e�e t that should be properly taken into a ount when sear hing for the new line (unlike [9, 120, 173℄). The systemati origin of the line is arefully in- vestigated be ause of the previous study of the line- like residual at ∼2.5 keV in the Willman 1 dwarf spheroidal, see the `Introdu tion' se tion for details. However, the explanation of the ∼3.5 keV line with the general-type systemati s suggested in [97℄ is un- likely. For example, its position (in the frame of emitting obje t) remains remarkably onstant with the redshift [39, 45, 93℄, see Fig. 5, whi h annot be explained by simple systemati s. The line is also independently dete ted by �ve dete tors on-board three osmi missions, see Tables 2 and 3. Finally, similar feature of systemati origin should have been dete ted in the blank-sky dataset [39℄, and should have di�erent radial behaviour in the outskirts of the Perseus luster [39, 77℄. 3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7 3.75 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 Li ne p os iti on [k eV ] NED redshift MOS PN Fig. 5: The position of new line dete ted in [93℄ (in the frame of emitting galaxy luster) as a fun tion of the luster redshift. The red and bla k dashed lines show the expe ted behaviour in ase of purely systemati and osmi line origins (assuming the line position 3.52 keV in the dete tor frame expe ted from [39, 27℄), respe - tively (Adapted from Figure 3 in [93℄). On the other hand, the explanation of the new line with the Kxviii line omplex at ∼3.5 keV sug- gested by [97℄ (see also an extensive dis ussion in [28, 45, 46, 96℄) is still possible, at least for the Gala ti Centre region and galaxy lusters, on- trary to the initial laims of [39, 45℄. The rea- son is that the emission �ux from the Kxviii line omplex at ∼3.51 keV suggested by [97℄ is highly un ertain due to large un ertainties of the Potas- sium abundan e, see e. g. [139, 150℄ for a potential 2 level of un ertainty. Moreover, unlike other possible emission lines of astrophysi al origin near ∼3.5 keV (su h as Clxvii lines at 3.51 keV found largely sub- dominant in the Gala ti Centre region [97℄ and in galaxy lusters [46℄), Kxviii line omplex does not have stronger ounterparts at other energies and an hardly be ex luded by the measurements of other lines, the strongest of them is the Kxix line om- 2 The results of [139℄ indi ate an order of magnitude over-abundan e of Potassium in the solar orona ompared to the solar photo- sphere. Based on this result, [139℄ suggested that the Potassium abundan e in hot plasma in galaxies and galaxy lusters may have also been enhan ed ompared to the solar photospheri values. However, be ause at the moment there is no established me hanism that ould e�e tively provide su h an enhan ement, the results of [139℄ only indi ate the potential level of un ertainty, similar to the measurements in [150℄. 6 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi plex at 3.71 keV of omparable strength [92℄. The same is true about the harge ex hange of Sxvi ions re ently suggested by [86℄. An alternative approa h is to study the line mor- phology. At the moment, two di�erent methods have been used. The �rst method [39, 45℄ is to split the region overed by some astrophysi al sour es into several independent subregions, large enough to dete t the line in ea h of them, and to model their spe tra separately looking for a line-like ex- ess in ea h of subregions. As a result, in [45℄ it was shown that the ∼3.5 keV line in the Perseus luster is somewhat more on entrated ompared to de aying dark matter distributed a ording to the Navarro-Frenk-White [132, 133℄ pro�le. By studying the ∼3.5 keV line emission from the Perseus luster outskirts, in [39℄ it was obtained that su h distribu- tion is better onsistent with the radiatively de ay- ing dark matter distributed a ording to the well- established Navarro-Frenk-White pro�le than with the astrophysi al ontinuum emission distributed a - ording to the isothermal β-model of [50℄. The re ent detailed study [77℄ on�rms this result and expands it to the entral region of the Perseus luster. 0 20 40 60 80 100 3400 3450 3500 3550 3600 3650 3700 3750 3800 B ro ad en ed li ne e m is si vi ty [a rb . u ni ts ] Energy [eV] 3 x K lines, GC model 3, Astro-H/SXS 1 x Ar lines, GC model 3, Astro-H/SXS 1/3 x S lines, GC model 3, Astro-H/SXS 1 x Cl lines, GC model 3, Astro-H/SXS Fig. 6: Line emissivities (in arbitrary units) broadened with energy resolution of Soft X-ray Spe trometer (SXS) on-board Hitomi (former Astro-H ), σSXS = 5 eV, as fun tions of energy for three- omponent model of [97℄ of Gala ti Centre. The relative S, Ar, Cl and K abun- dan es are set to 1/3 : 1 : 1 : 3, a ording to Se . 2.2 of [97℄. Thin dashed line shows the total line emissivity (Adapted from Figure 2 in [92℄). The se ond method to study the line morphol- ogy [49℄ deals with the spatial distribution of the `line plus ontinuum' X-ray emission in the Perseus luster and the Gala ti Centre region with further eliminating the ontinuum omponent by either as- suming it is spatially smooth or ross- orrelating the `line plus ontinuum' images in several energy bands (in luding those dominated by the astrophys- i al line emission). By using the se ond method, the authors of [49℄ show that adding the de aying dark matter distribution from a smooth dark mat- ter pro�le (Navarro-Frenk-White, Einasto, Burkert) does not improve the �t quality in both obje ts, and demonstrate that distribution of the events in the 3.45�3.6 keV bands orrelates with that in the en- ergy bands of strong astrophysi al emission, rather than with that in line-free energy bands. Based on these �ndings, [49℄ laims the ex lusion of the de- aying dark matter origin of 3.5 keV in the Gala ti Centre and the Perseus luster. To ultimately he k the astrophysi al origin of the ∼3.5 keV line, new observations with high-resolution imaging 3 spe trometers su h as Soft X-ray Spe - trometer (SXS) [130℄ on-board the re ently laun hed Hitomi 4 (former Astro-H ) mission [168℄, Mi ro-X sounding ro ket experiment [73℄ and the X-ray In- tegral Field Unit (X-IFU) [14, 142℄ on-board the planned Athena mission [15, 131℄, are planned. If the position of the new line in identally oin ides with that of the Kxviii line omplex, a more detailed study of the ratios of the Potassium line emissivities will be essential to �nally he k the astrophysi al ori- gin of the new line, see Fig. 6 for details. other extra line andidates in X-ray range Although the line at ∼3.5 keV re eives the largest attention of the ommunity, there are three other line andidates in X-rays whi h origin is also not estab- lished: 1. A ording to [141℄, intensity of the Fexxvi Lyγ line at 8.7 keV observed in Suzaku/XIS spe - trum of the Milky Way entre [103℄ annot be explained by the standard ionization and re- ombination pro esses and dark matter de ay may be a possible explanation of this ex ess. 2. A ording to Se . 1.4 of [104℄, two faint extra line-like ex esses at 9.4 and 10.1 keV are de- te ted in the ombined Suzaku/XIS spe trum of the Gala ti Bulge region. Notably, posi- tions of these ex esses do not oin ide with any bright 5 astrophysi al or instrumental line and their intensities an be explained in frames of de aying dark matter origin, see right Fig. 8 of [104℄. 3 Grating spe trometers su h as Chandra/HETGS [48℄ have ex ellent spe tral resolution for point sour es; however, for extended (&1 ar min) sour es their spe tral resolution usually degrades to that of existing imaging spe trometers, see e. g. [65℄. 4 Although Hitomi is now broken apart, it had observed Perseus luster before be oming non-operational [88, 101℄. 5 The newest available atomi database AtomDB v.3.0.2 [75℄ ontains several faint Nixxvi � Nixxviii emission lines at 10.02-10.11 keV. 7 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi possible impli ations for new physi s If none of the � onventional� explanations dis- ussed in the previous se tions were valid, the exis- ten e of the new line at ∼3.55 keV would be an indi- ation of a new physi s beyond the Standard Model. Histori ally, the �rst model dis ussed in onne - tion with ∼3.5 keV dete tion is the neutrino minimal extension of the Standard Model with three right- handed (sterile) neutrinos (the νMSM) [12, 43℄. In this model, the lightest sterile neutrino with the mass in keV range forms the bulk of dark matter while the two heavier sterile neutrinos are responsible for the two other established phenomena beyond the Stan- dard Model � neutrino os illations and generation of asymmetry between baryons and anti-baryons in early Universe. Sterile neutrinos de ay possesses the 2-body radiative hannel N → γ + ν, so the obser- vation of ∼3.5 keV de ay line would imply the ex- isten e of light sterile neutrino dark matter parti- les with mass ∼7.1 keV. The simplest produ tion s enario of sterile neutrino dark matter � via the non-resonant os illations of the usual (a tive) neu- trinos in the early Universe [1, 2, 3, 11, 66, 67℄ � is already ex luded by the ombination of the X- ray measurements [30℄, measurements of the Lyα forest [31, 32, 160, 176, 177, 178℄ and the phase- spa e bound from dwarf spheroidal galaxies [10, 38, 85, 161, 171℄. The realisti s enario of the dark matter produ tion within the νMSM now involves the resonant os illations of a tive neutrinos in hot primordial plasma with the signi� ant lepton asym- metry generated by de ays of heavier sterile neutri- nos [4, 83, 108, 162, 174℄. The parameters of the ob- served ∼3.5 keV line are onsistent with the νMSM predi tions, see Fig. 7 for details. Be ause the inter- a tion of sterile neutrino dark matter with the Stan- dard Model parti les is orders of magnitude weaker than that of ordinary neutrinos, its prospe ts for di- re t dete tion in a parti le physi s experiment are very far from the existing experimental te hnique, see [6, 68, 110, 111, 126℄. To on�rm the νMSM, a sear h for heavier sterile neutrinos in the GeV range is needed, handled by e. g. the planned Sear h for Hidden Parti les (SHiP) experiment [7, 21℄ and the Future ele tron-positron e + e − Cir ular Collider (FCC-ee) [19℄. However, the on�rmation of the de aying dark matter origin of the new line does not imply the ex- isten e of νMSM sterile neutrinos as there are plenty of other alternatives whi h an potentially explain the ∼3.55 keV line, see e. g. [6, 27, 94℄ and the refer- en es therein. Di�eren es among these models an be further probed by: � hanges in the new line morphology be ause of the non-negligible initial dark matter velo ities, see e. g. [117, 119℄; � other astrophysi al and osmologi al tests, see e. g. [4, 23, 24, 25, 38, 44, 90, 100, 109, 116, 118, 124, 154, 156, 157, 175, 180℄; � sear h for the �smoking gun� signatures in the future dedi ated parti le physi s experiments, su h as SHiP [7, 21℄ and FCC-ee [19℄ experi- ments. Re ently proposed alternatives to the radiatively de aying dark matter in lude: the de ay of ex ited dark matter states [18, 20, 53, 54, 55, 63, 74, 138, 158℄, annihilating dark matter [13, 69, 76, 121℄, dark matter de aying into the axion-like parti les with further onversion to photons in a magneti �eld [8, 16, 52, 57, 58℄. These models predi t the substantial di�eren e in the ∼3.5 keV line morphol- ogy ompared to the radiatively de aying dark mat- ter. For example, the spatial distributions of the new line in these models should be more on entrated to- wards the entres of the dark matter-dominated ob- je ts ompared to radiatively de aying dark matter, e. g. due to larger dark matter density (for ex ited and annihilating dark matter) or larger magneti �elds (for magneti �eld onversion of axion-like par- ti les). Further non-observation of the ∼3.5 keV line in the outskirts of the dark matter-dominated ob- je ts would argue in favour of these models. I n t e r a c t i o n s t r e n g t h S i n 2 ( 2 θ) Dark matter mass MDM [keV] 10-13 10-12 10-11 10-10 10-9 10-8 10-7 2 5 50 1 10 DM overproduction Not enough DM T r e m a i n e - G u n n / L y m a n - α Excluded by X-ray observations I n t e r a c t i o n s t r e n g t h S i n 2 ( 2 θ) Dark matter mass MDM [keV] 10-13 10-12 10-11 10-10 10-9 10-8 10-7 2 5 50 1 10 DM overproduction Not enough DM T r e m a i n e - G u n n / L y m a n - α Excluded by X-ray observations I n t e r a c t i o n s t r e n g t h S i n 2 ( 2 θ) Dark matter mass MDM [keV] 10-13 10-12 10-11 10-10 10-9 10-8 10-7 2 5 50 1 10 DM overproduction Not enough DM T r e m a i n e - G u n n / L y m a n - α Excluded by X-ray observations I n t e r a c t i o n s t r e n g t h S i n 2 ( 2 θ) Dark matter mass MDM [keV] 10-13 10-12 10-11 10-10 10-9 10-8 10-7 2 5 50 1 10 DM overproduction Not enough DM T r e m a i n e - G u n n / L y m a n - α Excluded by X-ray observations I n t e r a c t i o n s t r e n g t h S i n 2 ( 2 θ) Dark matter mass MDM [keV] 10-13 10-12 10-11 10-10 10-9 10-8 10-7 2 5 50 1 10 DM overproduction Not enough DM T r e m a i n e - G u n n / L y m a n - α Excluded by X-ray observations I n t e r a c t i o n s t r e n g t h S i n 2 ( 2 θ) Dark matter mass MDM [keV] 10-13 10-12 10-11 10-10 10-9 10-8 10-7 2 5 50 1 10 DM overproduction Not enough DM T r e m a i n e - G u n n / L y m a n - α Excluded by X-ray observations Fig. 7: Constraints on sterile neutrino dark matter within the νMSM model [12, 43℄. In every point in the white region sterile neutrinos onstitute 100% of dark matter and their properties agree with the existing bounds. The blue point orresponds to the observed line from the Andromeda galaxy, while the error bars indi- ate the statisti al errors (thi k) and un ertainty in the dark matter distribution at the entral part of the An- dromeda galaxy (thin) (Adapted from Figure 4 in [39℄). on lusion and future dire tions The origin of the new emission line at ∼3.5 keV reported in [27, 39, 45, 93, 173℄ remains unexplained. The observed properties of the new line are onsis- tent with the radiatively de aying dark matter as well as the other interesting s enarios (su h as ex it- ing dark matter, annihilating dark matter and the 8 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi dark matter de aying into axion-like parti les fur- ther onverted in osmi magneti �elds) motivated by various parti le physi s extensions of the Stan- dard Model. In ase of the radiatively de aying dark matter, further dete tions would lead to the dire t dete tion of the new physi s. Spe ially dedi ated ob- servations using the existing X-ray missions (su h as XMM-Newton, Chandra, Suzaku) still allow for su h dete tions although one should take spe ial are of the various systemati e�e ts that ould mimi or hide the new line. The alternative is to use new better instruments. The basi requirements for su h instruments � higher grasp (the produ t of �eld-of-view and ef- fe tive area) and better spe tral resolution � were �rst formulated in [26℄. Both the soft X-ray Spe - trometer [130℄ on-board the new X-ray mission Hit- omi (former Astro-H ) [102, 168℄ and the planned Mi ro-X sounding ro ket experiment [73℄ meet only the se ond requirement having the energy resolution by an order of magnitude better (∼ 5 eV) than ex- isting imaging spe trometers. Before being broken apart, Hitomi has already observed the Perseus lus- ter [101℄. It was expe ted [45℄ that su h an observa- tion would have allowed Hitomi to pre isely deter- mine the new line position in the brightest obje ts with the prolonged observations and to dete t the Kxix emission line omplex at ∼3.71 keV. Another possible option is to resolve the intrinsi width of the new line be ause of its Doppler broadening in galaxies and galaxy lusters [45, 166℄. As a result, Hitomi/SXS is able to he k whether the new line omes from the new physi s or from the (anoma- lously enhan ed) astrophysi al emission. The same is expe ted from the Mi ro-X ro ket-based mi ro- alorimeter (to be laun hed in 2017) whi h will ob- serve the entral region of our Galaxy. Another pos- sibility is to use the planned eROSITA instrument on-board Spektrum-Röntgen-Gamma mission [125℄ and the planned LOFT mission [187℄ whose high grasp and moderate energy resolution would allow to dete t the new line at mu h smaller intensi- ties [134, 186℄. Finally, an �ultimate� imaging spe - trometer proposed in e. g. [29℄ (an example is the X- ray Integral Field Unit (X-IFU) [14, 142℄ on-board the planned Athena mission [15, 131℄) would reveal the detailed morphology stru ture of the ∼3.5 keV line [135℄. a knowledgement This work was supported by a resear h grant from VILLUM FONDEN. The author also a knowledges partial support from the Swiss National S ien e Foundation grant SCOPE IZ7370-152581, the Pro- gram of Cosmi Resear h of the National A ademy of S ien es of Ukraine, the State Fund for Fundamen- tal Resear h of Ukraine and the State Programme of Implementation of the Grid Te hnology in Ukraine during the early stages of this work. referen es [1℄ AbazajianK. 2006, Phys. Rev.D, 73, 063506 [2℄ AbazajianK., FullerG.M. & PatelM. 2001, Phys. Rev.D, 64, 023501 [3℄ AbazajianK., FullerG.M. & Tu kerW.H. 2001, ApJ, 562, 593 [4℄ AbazajianK.N. 2014, Phys. Rev. Lett., 112, 161303 [5℄ AbazajianK.N., Markevit hM., Koushiappas S.M. & Hi koxR.C. 2007, Phys. Rev.D, 75, 063511 [6℄ Adhikari R., Agostini M., Ky N.A. et al. 2016, [arXiv:1602.04816℄ [7℄ Alekhin S., AltmannshoferW., AsakaT. et al. 2015, [arXiv:1504.04855℄ [8℄ AlvarezP.D., Conlon J. P., DayF.V., MarshM. C.D. & RummelM. 2015, JCAP, 4, 013 [9℄ AndersonM. E., ChurazovE. & BregmanJ. N. 2015, MNRAS, 452, 3905 [10℄ AngusG.W. 2010, JCAP, 3, 026 [11℄ AsakaT., LaineM. & ShaposhnikovM. 2006, J. High Energy Phys., 6, 053 [12℄ AsakaT. & ShaposhnikovM. 2005, Phys. Lett. B, 620, 17 [13℄ Baek S., KoP. & ParkW.-I. 2014, [arXiv:1405.3730℄ [14℄ Barret D., den Herder J.W., Piro L. et al. 2013, [arXiv:1308.6784℄ [15℄ BarretD., NandraK., Bar ons X. et al. 2013, in `SF2A- 2013: Pro . the Annual meeting of the Fren h So iety of Astronomy and Astrophysi s', eds.: CambresyL., Mar- tins F., Nuss E. & Pala ios A., 447 [16℄ Berg M., Conlon J. P., Day F. et al. 2016, [arXiv:1605.01043℄ [17℄ BergströmL. 2000, Reports on Progress in Physi s, 63, 793 [18℄ BerlinA., DiFranzoA. & HooperD. 2015, Phys. Rev.D, 91, 075018 [19℄ Blondel A., Graverini E., SerraN. & ShaposhnikovM., for the FCC-ee study team. 2014, [arXiv:1411.5230℄ [20℄ BoddyK.K., Feng J. L., KaplinghatM., ShadmiY. & Tait T.M.P. 2014, Phys. Rev.D, 90, 095016 [21℄ BoniventoW., BoyarskyA., DijkstraH. et al. 2013, [arXiv:1310.1762℄ [22℄ Borriello E., Paolillo M., Miele G., LongoG. & OwenR. 2012, MNRAS, 425, 1628 [23℄ Bose S., FrenkC. S., JunH., La eyC.G. & LovellM.R. 2016, [arXiv:1605.03179℄ [24℄ Bose S., Hellwing W.A., Frenk C. S. et al. 2015, [arXiv:1507.01998℄ [25℄ Bose S., Hellwing W.A., Frenk C. S. et al. 2016, [arXiv:1604.07409℄ [26℄ BoyarskyA., den Herder J., NeronovA. & Ru hay- skiyO. 2007, Astropart. Phys., 28, P. 303�311. [27℄ BoyarskyA., Franse J., IakubovskyiD. & Ru hay- skiyO. 2014, [arXiv:1408.2503℄ [28℄ BoyarskyA., Franse J., IakubovskyiD. & Ru hay- skiyO. 2014, [arXiv:1408.4388℄ [29℄ BoyarskyA., IakubovskyiD. & Ru hayskiyO. 2012, Physi s of the Dark Universe, 1, 136 [30℄ BoyarskyA., IakubovskyiD., Ru hayskiyO. & Sav- 9 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi henkoV. 2008, MNRAS, 387, 1361 [31℄ BoyarskyA., Lesgourgues J., Ru hayskiyO. & VielM. 2009, JCAP, 5, 12 [32℄ BoyarskyA., Lesgourgues J., Ru hayskiyO. & VielM. 2009, Phys. Rev. Lett., 102, 201304 [33℄ BoyarskyA., MalyshevD., NeronovA. & Ru hay- skiyO. 2008, MNRAS, 387, 1345 [34℄ BoyarskyA., NeronovA., Ru hayskiyO. & Shaposh- nikovM. 2006, MNRAS, 370, 213 [35℄ BoyarskyA., NeronovA., Ru hayskiyO. & Shaposh- nikovM. 2006, Phys. Rev.D, 74, 103506 [36℄ BoyarskyA., NeronovA., Ru hayskiyO., Shaposh- nikovM. & Tka hev I. 2006, Phys. Rev. Lett., 97, 261302 [37℄ BoyarskyA., Nevalainen J. & Ru hayskiyO. 2007, A&A, 471, 51 [38℄ BoyarskyA., Ru hayskiyO. & IakubovskyiD. 2009, JCAP, 3, 5 [39℄ Boyarsky A., Ru hayskiy O., Iakubovskyi D. & Franse J. 2014, Phys. Rev. Lett., 113, 251301 [40℄ BoyarskyA., Ru hayskiyO., IakubovskyiD., Ma - io' A.V. & MalyshevD. 2009, [arXiv:0911.1774℄ [41℄ BoyarskyA., Ru hayskiyO., IakubovskyiD. et al. 2010, MNRAS, 407, 1188 [42℄ BoyarskyA., Ru hayskiyO. & Markevit hM. 2008, ApJ, 673, 752 [43℄ BoyarskyA., Ru hayskiyO. & ShaposhnikovM. 2009, Ann. Rev. Nu l. Parti le S ien e, 59, 191 [44℄ Bozek B., Boylan-Kol hinM., Horiu hi S. et al. 2015, [arXiv:1512.04544℄ [45℄ Bulbul E., Markevit h M., Foster A. et al. 2014, ApJ, 789, 13 [46℄ Bulbul E., Markevit h M., Foster A.R. et al. 2014, [arXiv:1409.4143℄ [47℄ Bulbul E., Markevit hM., FosterA. et al. 2016, [arXiv:1605.02034℄ [48℄ Canizares C. R., Davis J. E., DeweyD. et al. 2005, PASP, 117, 1144 [49℄ Carlson E., JeltemaT. & ProfumoS. 2015, JCAP, 2, 009 [50℄ Cavaliere A. & Fus o-FemianoR. 1976, A&A, 49, 137 [51℄ CheminL., CarignanC. & FosterT. 2009, ApJ, 705, 1395 [52℄ Ci oli M., Conlon J. P., MarshM. C.D. & RummelM. 2014, Phys. Rev.D, 90, 023540 [53℄ Cline J.M., FreyA.R. 2014, Phys. Rev.D, 90, 123537 [54℄ Cline J.M., FreyA.R. 2014, JCAP, 10, 013 [55℄ Cline J.M., Liu Z., Moore G.D., FarzanY. & XueW. 2014, Phys. Rev.D, 89, 121302 [56℄ Co ato L., GerhardO., ArnaboldiM. et al. 2009, MN- RAS, 394, 1249 [57℄ Conlon J. P. & DayF.V. 2014, JCAP, 11, 033 [58℄ Conlon J. P. & Powell A. J. 2015, JCAP, 1, 019 [59℄ Corbelli E. 2003, MNRAS, 342, 199 [60℄ Corbelli E., Lorenzoni S., WalterbosR., BraunR. & ThilkerD. 2010, A&A, 511, A89 [61℄ de Plaa J., WernerN., Bleeker J. A.M. et al. 2007, A&A, 465, 345 [62℄ DekelA., Stoehr F., MamonG.A. et al. 2005, Nature, 437, 707 [63℄ D'EramoF., HambletonK., ProfumoS. & StefaniakT. 2016, [arXiv:1603.04859℄ [64℄ DereK.P., Landi E., MasonH.E., Monsignori Fossi B. C. & YoungP.R. 1997, A&AS, 125, 149 [65℄ DeweyD. 2002, in `High Resolution X-ray Spe tros opy with XMM-Newton and Chandra', ed.: Branduardi- Raymont G. [66℄ Dodelson S. & WidrowL.M. 1994, Phys. Rev. Lett., 72, 17 [67℄ DolgovA.D. & Hansen S.H. 2002, Astropart. Phys., 16, 339 [68℄ DragounO. & VénosD. 2015, [arXiv:1504.07496℄ [69℄ DudasE., Heurtier L. & MambriniY. 2014, Phys. Rev.D, 90, 035002 [70℄ Einasto J. 2009, [arXiv:0901.0632℄ [71℄ Einasto J. & EinastoM. 2000, in `IAU Colloq. 174: Small Galaxy Groups', eds.: ValtonenM. J. & FlynnC., 360 [72℄ EvrardA. E., Metzler C.A. & Navarro J. F. 1996, ApJ, 469, 494 [73℄ Figueroa-Feli iano E., AndersonA. J., CastroD. et al. 2015, [arXiv:1506.05519℄ [74℄ FinkbeinerD. P. & WeinerN. 2014, [arXiv:1402.6671℄ [75℄ FosterA., SmithR.K., Bri khouseN. S. et al. 2014, in `AAS/High Energy Astrophysi s Division', 115.06 [76℄ FrandsenM. T., SanninoF., Shoemaker I.M. & Svend- senO. 2014, JCAP, 5, 033 [77℄ Franse J., Bulbul E., Foster A. et al. 2016, [arXiv:1604.01759℄ [78℄ FrenkC. S. & White S.D.M. 2012, Annalen der Physik, 524, 507 [79℄ FuL., SemboloniE., HoekstraH. et al. 2008, A&A, 479, 9 [80℄ Gardner S. & FullerG.M. 2013, Progress in Parti le and Nu lear Physi s, 71, 167 [81℄ GarmireG. P., BautzM.W., FordP.G., Nousek J. A. & Ri kerG.R. Jr. 2003, in `X-Ray and Gamma-Ray Tele- s opes and Instruments for Astronomy', eds.: Truem- per J. E. & TananbaumH.D., 28 [82℄ Geringer-SamethA., Koushiappas S.M. & WalkerM. 2015, ApJ, 801, 74 [83℄ Ghiglieri J., LaineM. 2015, J. High Energy Phys., 11, 171 [84℄ GilmoreG., WilkinsonM. I., WyseR.F. G. et al. 2007, ApJ, 663, 948 [85℄ GorbunovD., KhmelnitskyA. & RubakovV. 2008, JCAP, 0810, 041 [86℄ GuL., Kaastra J., RaassenA. J. J. et al. 2015, A&A, 584, L11 [87℄ HinshawG., LarsonD., KomatsuE. et al. 2013, ApJs, 208, 19 [88℄ Hitomi Collaboration: AharonianF., AkamatsuH. et al. 2016, Nature, 535, 117 [89℄ Horiu hi S., HumphreyP. J., Oñorbe J. et al. 2014, Phys. Rev. D, 89, 025017 [90℄ Horiu hi S., NgK.C.Y., Gaskins J.M., SmithM. & Pree eR. 2015, [arXiv:1502.03399℄ [91℄ IakubovskyiD. 2013, `Constraining properties of dark 10 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi matter parti les using astrophysi al data', Ph.D. the- sis, Instituut-Lorentz for Theoreti al Physi s [92℄ IakubovskyiD. 2015, MNRAS, 453, 4097 [93℄ IakubovskyiD., Bulbul E., Foster A.R., Sav henkoD. & SadovaV. 2015, [arXiv:1508.05186℄ [94℄ IakubovskyiD.A. 2014, Advan es in Astronomy and Spa e Physi s, 4, 9 [95℄ Jansen F., LumbD., Altieri B. et al. 2001, A&A, 365, L1 [96℄ JeltemaT. & ProfumoS. 2014, [arXiv:1411.1759℄ [97℄ JeltemaT. & ProfumoS. 2015, MNRAS, 450, 2143 [98℄ JeltemaT. & ProfumoS. 2016, MNRAS, 458, 3592 [99℄ JeltemaT. E. & ProfumoS. 2008, ApJ, 686, 1045 [100℄ Kamada A., Inoue K.T. & Takahashi T. 2016, [arXiv:1604.01489℄ [101℄ KelleyR. L. & MitsudaK. 2016, in `AAS/High Energy Astrophysi s Division', 206.02 [102℄ KitayamaT., BautzM., Markevit hM. et al. 2014, [arXiv:1412.1176℄ [103℄ KoyamaK., HyodoY., InuiT. et al. 2007, PASJ, 59, 245 [104℄ Koyama K., Kataoka J., Nobukawa M. et al. 2014, [arXiv:1412.1170℄ [105℄ KoyamaK., TsunemiH., Dotani T. et al. 2007, PASJ, 59, 33 [106℄ KuntzK.D. & SnowdenS. L. 2008, A&A, 478, 575 [107℄ KusenkoA., LoewensteinM. & YanagidaT.T. 2013, Phys. Rev.D, 87, 043508 [108℄ LaineM. & ShaposhnikovM. 2008, JCAP, 6, 31 [109℄ LiR., FrenkC. S., Cole S. et al. 2016, MNRAS, 460, 363 [110℄ LiaoW. 2010, Phys. Rev.D, 82, 073001 [111℄ LiaoW., WuX.-H. & ZhouH. 2014, Phys. Rev.D, 89, 093017 [112℄ LoewensteinM. & KusenkoA. 2010, ApJ, 714, 652 [113℄ LoewensteinM. & KusenkoA. 2012, ApJ, 751, 82 [114℄ LoewensteinM., KusenkoA. & BiermannP. L. 2009, ApJ, 700, 426 [115℄ LovellM.R., BertoneG., BoyarskyA., JenkinsA. & Ru hayskiyO. 2015, MNRAS, 451, 1573 [116℄ Lovell M. R., Bose S., Boyarsky A. et al. 2015, [arXiv:1511.04078℄ [117℄ LovellM.R., FrenkC. S., EkeV.R. et al. 2014, MN- RAS, 439, 300 [118℄ Ludlow A.D., Bose S., Angulo R.E. et al. 2016, [arXiv:1601.02624℄ [119℄ Ma iò A.V., Ru hayskiyO., BoyarskyA. & Muñoz- Cuartas J. C. 2013, MNRAS, 428, 882 [120℄ MalyshevD., NeronovA. & E kertD. 2014, Phys. Rev.D, 90, 103506 [121℄ MambriniY. & TomaT. 2015, [arXiv:1506.02032℄ [122℄ MasseyR., Kit hingT. & Ri hard J. 2010, Reports on Progress in Physi s, 73, 086901 [123℄ MasseyR., Rhodes J., Ellis R. et al. 2007, Nature, 445, 286 [124℄ Merle A., S hneiderA. 2015, Phys. Lett. B, 749, 283 [125℄ Merloni A., Predehl P., Be ker W. et al. 2012, [arXiv:1209.3114℄ [126℄ Mertens S., DoldeK., Korze zekM. et al. 2015, Phys. Rev.D, 91, 042005 [127℄ Mirabal N. 2010, MNRAS, 409, L128 [128℄ Mirabal N. & NietoD. 2010, [arXiv:1003.3745℄ [129℄ Mitsuda K., Bautz M., Inoue H. et al. 2007, PASJ, 59, 1 [130℄ MitsudaK., KelleyR. L., AkamatsuH. et al. 2014, SPIE Conf. Ser., 9144, 2 [131℄ NandraK., BarretD., Bar ons X. et al. 2013, [arXiv:1306.2307℄ [132℄ Navarro J. F., FrenkC. S. & White S.D.M. 1996, ApJ, 462, 563 [133℄ Navarro J. F., FrenkC. S. & White S.D.M. 1997, ApJ, 490, 493 [134℄ NeronovA., BoyarskyA., IakubovskyiD. & Ru hay- skiyO. 2014, Phys. Rev.D, 90, 123532 [135℄ NeronovA. & MalyshevD. 2015, [arXiv:1509.02758℄ [136℄ NgK.C. Y., Horiu hi S., Gaskins J.M., SmithM. & Pree eR. 2015, Phys. Rev.D, 92, 043503 [137℄ NoordermeerE., van der Hulst J.M., San isi R., Swa- tersR. S. & van AlbadaT. S. 2007, MNRAS, 376, 1513 [138℄ OkadaH. & TomaT. 2014, Phys. Lett. B, 737, 162 [139℄ Phillips K. J. H., Sylwester B. & Sylwester J. 2015, ApJ, 809, 50 [140℄ Plan k Collaboration: AdeP.A.R., AghanimN. et al. 2015, [arXiv:1502.01589℄ [141℄ ProkhorovD. & Silk J. 2010, ApJ, 725, L131 [142℄ RaveraL., Barret D., den Herder J.W. et al. 2014, SPIE Conf. Ser., 9144, 2 [143℄ Refregier A. 2003, ARA&A, 41, 645 [144℄ ReidB. A., Per ivalW. J., EisensteinD. J. et al. 2010, MNRAS, 404, 60 [145℄ Riemer-SorensenS. 2014, [arXiv:1405.7943℄ [146℄ Riemer-SørensenS. & HansenS.H. 2009, A&A, 500, L37 [147℄ Riemer-SørensenS., HansenS.H. & PedersenK. 2006, ApJ, 644, L33 [148℄ Riemer-Sørensen S., Pedersen K., Hansen S.H. & Dahle H. 2007, Phys. Rev.D, 76, 043524 [149℄ Riemer-SørensenS., WikD., MadejskiG. et al. 2015, ApJ, 810, 48 [150℄ RomanoD., Karakas A. I., TosiM. &Matteu i F. 2010, A&A, 522, A32 [151℄ RoosM. 2012, J. Mod. Phys., 3, 1152 [152℄ RozoE., We hslerR.H., Ryko�E. S. et al. 2010, ApJ, 708, 645 [153℄ Ru hayskiyO., BoyarskyA., IakubovskyiD. et al. 2016, MNRAS, 460, 1390 [154℄ RudakovskyiA. & IakubovskyiD. 2016, JCAP, 6, 017 [155℄ SarazinC. L. 1986, Rev. Mod. Phys., 58, 1 [156℄ S hneiderA. 2015, MNRAS, 451, 3117 [157℄ S hneiderA. 2016, [arXiv:1601.07553℄ [158℄ S hutzK. & SlatyerT.R. 2015, JCAP, 1, 021 [159℄ SekiyaN., YamasakiN.Y & MitsudaK. 2015, PASJ, 68, S31 [160℄ SeljakU., MakarovA., M Donald P. & Tra H. 2006, Phys. Rev. Lett., 97, 191303 [161℄ Shao S., Gao L., TheunsT. & FrenkC. S. 2013, MN- RAS, 430, 2346 [162℄ ShiX. & FullerG.M. 1999, Phys. Rev. Lett., 82, 2832 [163℄ SmithM. C., Ru htiG.R., HelmiA. et al. 2007, MN- 11 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi RAS, 379, 755 [164℄ SmithR.K., Bri khouseN. S., LiedahlD.A. & Ray- mondJ. C. 2001, ApJ, 556, L91 [165℄ Sonbas E., Rangelov B., Kargaltsev O. et al. 2015, [arXiv:1505.00216℄ [166℄ Spe khardE.G., NgK.C.Y., Bea omJ. F. & LahaR. 2015, [arXiv:1507.04744℄ [167℄ StrüderL., Briel U., DennerlK. et al. 2001, A&A, 365, L18 [168℄ Takahashi T., MitsudaK., KelleyR. et al. 2014, SPIE Conf. Ser., 9144, 25 [169℄ TamuraT., IizukaR., MaedaY., MitsudaK. & Ya- masakiN.Y. 2015, PASJ, 67, 23 [170℄ Tinker J. L., SheldonE. S., We hslerR.H. et al. 2012, ApJ, 745, 16 [171℄ Tremaine S. & GunnJ. E. 1979, Phys. Rev. Lett., 42, 407 [172℄ TurnerM. J. L., AbbeyA., ArnaudM. et al. 2001, A&A, 365, L27 [173℄ UrbanO., WernerN., Allen S.W. et al. 2015, MNRAS, 451, 2447 [174℄ VenumadhavT., Cyr-Ra ine F.-Y., AbazajianK.N. & Hirata C.M. 2015, [arXiv:1507.06655℄ [175℄ VielM., Be kerG. D., Bolton J. S. & HaehneltM.G. 2013, Phys. Rev.D, 88, 043502 [176℄ VielM., Be kerG.D., Bolton J. S. et al. 2008, Phys. Rev. Lett., 100, 041304 [177℄ Viel M., Lesgourgues J., Haehnelt M.G., Matarrese S. & Riotto A. 2005, Phys. Rev., D71, 063534 [178℄ Viel M., Lesgourgues J., Haehnelt M.G., Matarrese S. & Riotto A. 2006, Phys. Rev. Lett., 97, 071301 [179℄ WalkerM. 2013, in `Planets, Stars and Stellar Systems. Volume 5: Gala ti Stru ture and Stellar Populations', 1039 [180℄ WangM.-Y., Strigari L. E., LovellM.R., FrenkC. S. & ZentnerA.R. 2016, MNRAS, 457, 4248 [181℄ WatsonC.R., Bea omJ. F., YükselH. & WalkerT. P. 2006, Phys. Rev.D, 74, 033009 [182℄ WatsonC.R., Li Z. & PolleyN.K. 2012, JCAP, 3, 18 [183℄ WeisskopfM. C., TananbaumH.D., Van Spey- broe kL. P. & O'Dell S. L. 2000, in `X-Ray Opti s, Instruments, and Missions III', eds.: Truemper J. E. & As henba hB., 2 [184℄ White S.D.M., FrenkC. S. & DavisM. 1983, ApJ, 274, L1 [185℄ YükselH., Bea omJ. F. & WatsonC. R. 2008, Phys. Rev. Lett., 101, 121301 [186℄ Zandanel F., WenigerC. & AndoS. 2015, JCAP, 9,060 [187℄ Zane S., WaltonD., KennedyT. et al. 2014, SPIE Conf. Ser., 9144, 2 [188℄ Zwi kyF. 1933, Helveti a Physi a A ta, 6, 110 12 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi Table 1: Summary of sear hes for dark matter de ay line in X-ray observations ondu ted so far. This Table is an update of Table 1 in [134℄. Ref. Obje t Instrument Cleaned exposure, ks [34℄ Di�use X-ray ba kground HEAO-1, XMM-Newton/EPIC 224, 1450 [35℄ Coma, Virgo XMM-Newton/EPIC 20, 40 [36℄ Large Magellani Cloud XMM-Newton/EPIC 20 [147℄ Milky Way Chandra/ACIS-S3 Not spe i�ed [181℄ M31 ( entral 5′) XMM-Newton/EPIC 35 [148℄ Abell 520 Chandra/ACIS-S3 67 [37℄ Milky Way, Ursa Minor XMM-Newton/EPIC 547, 7 [5℄ Milky Way Chandra/ACIS 1500 [42℄ 1E 0657-56 (�Bullet luster�) Chandra/ACIS-I 450 [26℄ Milky Way X-ray mi ro- alorimeter 0.1 [185℄ Milky Way INTEGRAL/SPI 5500 [30℄ M31 ( entral 5− 13′) XMM-Newton/EPIC 130 [33℄ Milky Way INTEGRAL/SPI 12200 [114℄ Ursa Minor Suzaku/XIS 70 [146℄ Dra o Chandra/ACIS-S 32 [112℄ Willman 1 Chandra/ACIS-I 100 [41℄ M31, Fornax, S ulptor XMM-Newton/EPIC , Chandra/ACIS 400, 50, 162 [128℄ Willman 1 Chandra/ACIS-I 100 [127℄ Segue 1 Swift/XRT 5 [22℄ M33 XMM-Newton/EPIC 20-30 [182℄ M31 (12− 28′ o�- entre) Chandra/ACIS-I 53 [113℄ Willman 1 XMM-Newton/EPIC 60 [107℄ Ursa Minor, Dra o Suzaku/XIS 200, 200 [91℄ Sta ked galaxies XMM-Newton/EPIC 8500 [89℄ M31 Chandra/ACIS-I 404 [120℄ Sta ked dSphs XMM-Newton/EPIC 410 [9℄ Sta ked galaxies XMM-Newton/EPIC, Chandra/ACIS-I 14600, 15000 [169℄ Perseus Suzaku/XIS 520 [90, 136℄ Milky Way Fermi/GBM 4600 [159℄ Milky Way Suzaku/XIS 31500 [165℄ Dra o XMM-Newton/EPIC 87 [149℄ 1E 0657-56 (�Bullet luster�) NuSTAR 266 [98℄ Dra o XMM-Newton/EPIC 1660 13 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi Table 2: Properties of the ∼3.5 keV line reported by [39, 45℄. For their analysis, the authors of [39, 45℄ use di�erent X-ray datasets observed by MOS [172℄ and PN [167℄ ameras on-board XMM-Newton observatory [95℄ and ACIS instrument [81℄ on-board Chandra observatory [183℄. All error bars are at 1σ (68%) level. Ref. Obje t Redshift Instrument Exposure, Line position, Line �ux, Ms keV 10−6 ph/s/ m 2 [45℄ Full sta ked sample 0.009-0.354 MOS 6 3.57±0.02 4.0±0.8 [45℄ Full sta ked sample 0.009-0.354 PN 2 3.51±0.03 3.9 +0.6 −1.0 [45℄ Coma+Centaurus+Ophiu hus 0.009-0.028 MOS 0.5 3.57 a 15.9 +3.4 −3.8 [45℄ Coma+Centaurus+Ophiu hus 0.009-0.028 PN 0.2 3.57 a < 9.5 (90%) [45℄ Perseus (< 12′) 0.016 MOS 0.3 3.57 a 52.0 +24.1 −15.2 [45℄ Perseus (< 12′) 0.016 PN 0.05 3.57 a < 17.7 (90%) [45℄ Perseus (1− 12′) 0.016 MOS 0.3 3.57 a 21.4 +7.0 −6.3 [45℄ Perseus (1− 12′) 0.016 PN 0.05 3.57 a < 16.1 (90%) [45℄ Rest of the lusters 0.012-0.354 MOS 4.9 3.57 a 2.1 +0.4 −0.5 [45℄ Rest of the lusters 0.012-0.354 PN 1.8 3.57 a 2.0 +0.3 −0.5 [45℄ Perseus (> 1′) 0.016 ACIS-S 0.9 3.56±0.02 10.2 +3.7 −3.5 [45℄ Perseus (< 9′) 0.016 ACIS-I 0.5 3.56 a 18.6 +7.8 −8.0 [45℄ Virgo (< 500′′) 0.003-0.004 ACIS-I 0.5 3.56 a < 9.1 (90%) [39℄ M31 (< 14′) -0.001 b MOS 0.5 3.53±0.03 4.9 +1.6 −1.3 [39℄ M31 (10− 80′) -0.001 b MOS 0.7 3.50-3.56 < 1.8 (2σ) [39℄ Perseus (23− 102′) 0.0179 b MOS 0.3 3.50±0.04 7.0±2.6 [39℄ Perseus (23− 102′) 0.0179 b PN 0.2 3.46±0.04 9.2±3.1 [39℄ Perseus, 1st bin (23− 37′) 0.0179 b MOS 0.2 3.50 a 13.8±3.3 [39℄ Perseus, 2nd bin (42− 54′) 0.0179 b MOS 0.1 3.50 a 8.3±3.4 [39℄ Perseus, 3rd bin (68− 102′) 0.0179 b MOS 0.03 3.50 a 4.6±4.6 [39℄ Blank-sky � MOS 7.8 3.45-3.58 < 0.7 (2σ) a The line position is �xed at given value. b The redshift is �xed at NASA Extragala ti Database (NED) value. 14 Advan es in Astronomy and Spa e Physi s D. A. Iakubovskyi Table 3: Properties of∼3.5 keV line sear hed after February 2014 in di�erent X-ray datasets observed by MOS [172℄ and PN [167℄ ameras on-board XMM-Newton observatory [95℄, ACIS [81℄ instrument on-board Chandra observatory [183℄ and XIS instrument [105℄ on-board Suzaku observatory [129℄. All error bars are at 1σ (68%) level. Ref. Obje t Redshift Instrument Exposure, Line position, Line �ux, Ms keV 10−6 ph/s/ m 2 [145℄ Gala ti entre (2.5− 12′) 0.0 ACIS-I 0.8 3.51 ≃ 10a [97℄ Gala ti entre (0.3− 15′) 0.0 MOS 0.7 3.51 45± 4a [97℄ Gala ti entre (0.3− 15′) 0.0 PN 0.5 3.51 39± 7a [97℄ M31 0.0 MOS 0.5 3.53±0.07 2.1±1.5c [27℄ Gala ti entre (< 14′) 0.0 MOS 0.7 3.539±0.011 29±5 [173℄ Perseus ore (< 6′) 0.0179 b XIS 0.74 3.510 +0.023 −0.008 32.5+3.7 −4.3 [173℄ Perseus on�ned (6− 12.7′) 0.0179 b XIS 0.74 3.510 +0.023 −0.008 32.5+3.7 −4.3 [173℄ Coma (< 12.7′) 0.0231 b XIS 0.164 ≃ 3.45d ≃ 30d [173℄ Ophiu hus (< 12.7′) 0.0280 b XIS 0.083 ≃ 3.45d ≃ 40d [173℄ Virgo (< 12.7′) 0.0036 b XIS 0.09 3.55 a < 6.5 (2σ) [93℄ Abell 85 (< 14′) 0.0551 b MOS 0.20 3.44 +0.06 −0.05 6.3 +3.9 −3.6 [93℄ Abell 2199 (< 14′) 0.0302 b MOS 0.13 3.41 +0.04 −0.04 10.1 +5.1 −4.8 [93℄ Abell 496 (< 14′) 0.0329 b MOS 0.13 3.55 +0.06 −0.09 7.5 +6.1 −4.4 [93℄ Abell 496 (< 14′) 0.0329 b PN 0.08 3.45 +0.04 −0.03 16.8 +5.9 −6.4 [93℄ Abell 3266 (< 14′) 0.0589 b PN 0.06 3.53 +0.04 −0.06 8.7 +5.1 −4.5 [93℄ Abell S805 (< 14′) 0.0139 b PN 0.01 3.63 +0.05 −0.06 17.1 +9.3 −7.4 [93℄ Coma (< 14′) 0.0231 b MOS 0.17 3.49 +0.04 −0.05 23.7 +10.7 −9.0 [93℄ Abell 2319 (< 14′) 0.0557 b MOS 0.08 3.59 +0.05 −0.06 18.6 +10.7 −7.4 [93℄ Perseus (< 14′) 0.0179 b MOS 0.16 3.58 +0.05 −0.08 25.2 +12.5 −12.6 [93℄ Virgo e (< 14′) 0.0036 b PN 0.06 � < 9.3 [153℄ Dra o (< 14′) 0.0 PN 0.65 3.54 +0.06 −0.05 1.65 +0.67 −0.70 [77℄ Perseus (< 8.3′) 0.0179 b XIS 1.67 3.54±0.01 27.9 +3.5 −3.5 [77℄ Perseus (< 2′) 0.0179 b XIS 1.67 3.51±0.02 9.3 +2.6 −2.7 [77℄ Perseus (2′ − 4.5′) 0.0179 b XIS 1.67 3.55±0.02 16.7 +2.9 −3.0 [77℄ Perseus (4.5′ − 8.3′) 0.0179 b XIS 1.67 3.58±0.02 16.1 +3.2 −3.4 [47℄ Sta ked lusters 0.01-0.45 XIS 8.1 3.54 f 1.0 +0.5 −0.5 a Best-�t line �ux at the �xed position 3.51 keV oin ides with the brightest Kxviii line. b Redshift was �xed at the NASA Extragala ti Database (NED) value. c The line is dete ted at < 90% on�den e level. Su h a low �ux ( ompared with [39℄) is be ause of non-physi ally enhan ed level of ontinuum in the 3-4 keV band used in [97℄, see [28℄ for details. d Parameters estimated from Fig. 3 of [173℄. e Gives an example of the new line non-dete tion, see Table II of [93℄ for more details. f Line position is �xed at the best-�t energy dete ted in Suzaku observations of the Perseus luster by [77℄. 15