The path integral representation kernel of evolution operator in Merton-Garman model
In the framework of path integral the evolution operator kernel for the Merton-Garman Hamiltonian is constructed. Based on this kernel option formula is obtained, which generalizes the well-known Black-Scholes result. Possible approximation numerical schemes for path integral calculations are propos...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | Blazhyevskyi, L.F., Yanishevsky, V.S. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2011
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/119975 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The path integral representation kernel of evolution operator in Merton-Garman model / L.F. Blazhyevskyi, V.S. Yanishevsky // Condensed Matter Physics. — 2011. — Т. 14, № 2. — С. 23001:1-16. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Call warrants pricing formula under mixed-fractional Brownian motion with Merton jump-diffusion
von: S. Ibrahim, et al.
Veröffentlicht: (2022) -
Gaussian approximation for Ising model. Variational approach
von: Yanishevsky, V.S.
Veröffentlicht: (2000) -
The path integral method in interest rate models
von: V. S. Yanishevskyi, et al.
Veröffentlicht: (2021) -
Generalized invesion of Fredholm integral operators with degenerate kernel in a Banach spaces
von: V. P. Zhuravlov
Veröffentlicht: (2014) -
Numerical Realization of Integral Dynamic Models Based on the Method of Degrade Kernels
von: D. A. Verlan, et al.
Veröffentlicht: (2019)