Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state

We have derived formulations for the pressure derivatives of bulk modulus up to the third order and for higher order Gr¨uneisen parameters using the generalized free volume theory, and the generalized Rydberg equation of state. The properties derived in the present study are directly related to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Shanker, J., Singh, B.P., Jitendra, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2009
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/119988
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Extreme compression behaviour of higher derivative properties of solids based on the generalized Rydberg equation of state / J. Shanker, B.P. Singh, K. Jitendra // Condensed Matter Physics. — 2009. — Т. 12, № 2. — С. 205-213. — Бібліогр.: 33 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We have derived formulations for the pressure derivatives of bulk modulus up to the third order and for higher order Gr¨uneisen parameters using the generalized free volume theory, and the generalized Rydberg equation of state. The properties derived in the present study are directly related to the understanding of thermoelastic properties of solids. The third order Gr¨uneisen parameter (lambda λ) in the limit of in nite pressure has been found to approach a positive finite value for lambda in nity (λ∞) equal to 1/3. This is a result shown to be independent of the value of K-prime in nity, i. e., the pressure derivative of the bulk modulus at infinite pressure. The results based on other equations of state have also been reported and discussed. We find a relationship between λ∞ and pressure derivatives of bulk modulus at infinite pressure which is satisfied by different types of equations of state.