Mean spherical approximation for the Lennard-Jones-like two Yukawa model: Comparison against Monte Carlo data
Monte Carlo simulation studies are performed for the Lennard-Jones like two Yukawa (LJ2Y) potential to show how properties of this model fluid depend on the replacement of the soft repulsion by the hard-core repulsion. Different distances for the positioning of hard core have been explored. We have...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2011
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/120020 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Mean spherical approximation for the Lennard-Jones-like two Yukawa model: Comparison against Monte Carlo data/ J. Krejčí, I. Nezbeda, R. Melnyk, A. Trokhymchuk // Condensed Matter Physics. — 2011. — Т. 14, № 3. — С. 33005: 1-11. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Monte Carlo simulation studies are performed for the Lennard-Jones like two Yukawa (LJ2Y) potential to show how properties of this model fluid depend on the replacement of the soft repulsion by the hard-core repulsion. Different distances for the positioning of hard core have been explored. We have found, that for temperatures that are slightly lower and slightly higher of the critical point temperature for the Lennard-Jones fluid, placing the hard core at distances that are shorter than zero-potential energy is well justified by thermodynamic properties that are practically the same as in original LJ2Y model without hard core. However, going to extreme conditions with the high temperature one should be careful since presence of the hard core provokes changes in the properties of the system. The later is extremely important when the mean spherical approximation (MSA) theory is applied to treat the Lennard-Jones-like fluid. |
---|