A statistical model for antibody-antigen binding

We discuss a statistical model for antibody-antigen binding. The two macromolecules are assumed to be linked by a number of relatively weak bonds (or groups of correlated bonds) that are assumed to open and close statistically. We use the model for a preliminary analysis of experiments performed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1999
Hauptverfasser: Katletz, S., Titulaer, U.M.
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 1999
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/120398
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A statistical model for antibody-antigen binding / S. Katletz, U.M. Titulaer // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 361-368. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120398
record_format dspace
spelling irk-123456789-1203982017-06-13T03:03:18Z A statistical model for antibody-antigen binding Katletz, S. Titulaer, U.M. We discuss a statistical model for antibody-antigen binding. The two macromolecules are assumed to be linked by a number of relatively weak bonds (or groups of correlated bonds) that are assumed to open and close statistically. We use the model for a preliminary analysis of experiments performed in the Institute of Biophysics at the Johannes Kepler University. In these experiments the two molecules are brought into contact using an atomic force microscope; then a prescribed time dependent force is applied to the bond and the distribution of times needed to pull the molecules completely apart is measured. This quantity is calculated with our model; its dependence on the model parameters (binding free energies, number of groups of correlated elementary bonds, force dependence of the binding free energy) is determined. Обговорюється статистична модель, яка описує зв’язування антитіло-антиген. При цьому вважається, що дві макромолекули можуть поєднуватись через набір відносно слабих зв’язків (чи груп скорельованих зв’язків), що відкриваються і закриваються статистично. Ця модель використовується для попереднього аналізу експериментів, виконаних в Інституті біофізики Університету Йогана Кеплера. У цих експериментах дві молекули приводились у контакт, використовуючи атомної сили мікроскоп, а потім прикладалася певна залежна від часу сила до зв’язку і вимірювався розподіл часів, необхідних для повного розділення молекул. Ця характеристика розраховується з використанням запропонованої моделі; знайдена її залежність від модельних параметрів (вільних енергій зв’язування, числа груп скорельованих елементарних зв’язків, залежності вільної енергії зв’язування від сили). 1999 A statistical model for antibody-antigen binding / S. Katletz, U.M. Titulaer // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 361-368. — Бібліогр.: 5 назв. — англ. 1607-324X DOI:10.5488/CMP.2.2.361 PACS: 87.15.B, 87.80, 82.20.M, 05.20, 05.40 http://dspace.nbuv.gov.ua/handle/123456789/120398 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We discuss a statistical model for antibody-antigen binding. The two macromolecules are assumed to be linked by a number of relatively weak bonds (or groups of correlated bonds) that are assumed to open and close statistically. We use the model for a preliminary analysis of experiments performed in the Institute of Biophysics at the Johannes Kepler University. In these experiments the two molecules are brought into contact using an atomic force microscope; then a prescribed time dependent force is applied to the bond and the distribution of times needed to pull the molecules completely apart is measured. This quantity is calculated with our model; its dependence on the model parameters (binding free energies, number of groups of correlated elementary bonds, force dependence of the binding free energy) is determined.
author Katletz, S.
Titulaer, U.M.
spellingShingle Katletz, S.
Titulaer, U.M.
A statistical model for antibody-antigen binding
Condensed Matter Physics
author_facet Katletz, S.
Titulaer, U.M.
author_sort Katletz, S.
title A statistical model for antibody-antigen binding
title_short A statistical model for antibody-antigen binding
title_full A statistical model for antibody-antigen binding
title_fullStr A statistical model for antibody-antigen binding
title_full_unstemmed A statistical model for antibody-antigen binding
title_sort statistical model for antibody-antigen binding
publisher Інститут фізики конденсованих систем НАН України
publishDate 1999
url http://dspace.nbuv.gov.ua/handle/123456789/120398
citation_txt A statistical model for antibody-antigen binding / S. Katletz, U.M. Titulaer // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 361-368. — Бібліогр.: 5 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT katletzs astatisticalmodelforantibodyantigenbinding
AT titulaerum astatisticalmodelforantibodyantigenbinding
AT katletzs statisticalmodelforantibodyantigenbinding
AT titulaerum statisticalmodelforantibodyantigenbinding
first_indexed 2025-07-08T17:48:38Z
last_indexed 2025-07-08T17:48:38Z
_version_ 1837101929108340736
fulltext Condensed Matter Physics, 1999, Vol. 2, No 2(18), pp. 361–368 A statistical model for antibody-antigen binding S.Katletz, U.M.Titulaer Institute for Theoretical Physics, Johannes Kepler University Altenbergerstrasse 69, Linz, Austria Received July 6, 1998 We discuss a statistical model for antibody-antigen binding. The two macro- molecules are assumed to be linked by a number of relatively weak bonds (or groups of correlated bonds) that are assumed to open and close sta- tistically. We use the model for a preliminary analysis of experiments per- formed in the Institute of Biophysics at the Johannes Kepler University. In these experiments the two molecules are brought into contact using an atomic force microscope; then a prescribed time dependent force is ap- plied to the bond and the distribution of times needed to pull the molecules completely apart is measured. This quantity is calculated with our model; its dependence on the model parameters (binding free energies, number of groups of correlated elementary bonds, force dependence of the binding free energy) is determined. Key words: random walk, one step process, first passage time, dissociation time, antibody-antigen binding PACS: 87.15.B, 87.80, 82.20.M, 05.20, 05.40 1. Chemical reaction as a random walk with absorbing barrier In equilibrium statistical physics, the mass action law gives a relation between the reaction rates and the concentrations of reactants and products in a chemical reaction. The equilibrium constant involved is a function of the free energy difference between initial and final states and the temperature alone. This theory, however, cannot predict the kinetics of a reaction, since that is determined by the reaction path and by the potential energy barrier between the equilibrium states. Therefore one has to use non-equilibrium thermodynamics and introduce a model for the reaction in order to calculate the dissociation rate. Montroll and Shuler[1] investigated a model for an uni-molecular reaction of the type M + AB ⇀↽ M+ AB ∗, AB ∗ ⇀ A+ B, (1) c© S.Katletz, U.M.Titulaer 361 S.Katletz, U.M.Titulaer 0 1 2 N−1 N Figure 1. Potential energy and energy levels where M represents the heat bath molecules (the solvent), AB the reactant molecu- les, AB∗ in their excited states and A+B the dissociation products. They assumed that the potential energy between the molecules A and B is harmonic, the energy states are therefore En = hν(n + 1 2 ). During the collision between the solvent and reactant molecules energy is transferred and transitions between the energy states occur (see figure 1). Now an absorbing barrier is introduced, i.e. when a molecule AB∗ reaches the N-th energy state it dissociates and is removed (there are no back reactions). We denote by xn the probability that a molecule is in the nth state. This quantity obeys the master equation dxn dt = ∑ m Wnmxm −Wmnxn = ∑ m [ Wnm − δnm ∑ l Wln ] xm = ∑ m Anmxm (2) with Anm = Wnm − δnm ∑ l Wln . (3) Wnm is the transition probability per unit time for a transition from level m to n. In the original model, quantum mechanical perturbation theory for a harmonic oscillator in a heat bath yields the expression Wn,n+1 = eβEn+1(n + 1)W0,1 , Wn+1,n = eβEn(n + 1)W0,1 . (4) Note that only nearest neighbour transition can occur; we therefore have a one-step Markov process. 362 Antibody-antigen binding We want to describe the dissociation of biomolecules, a reaction where a large number of small bonds must be broken. We identify the number N with the number of bonds (not necessarily the total number of bonds in the case that a certain number of bonds form a group and can only open and close collectively – then N is the number of groups). EN is the dissociation energy and the subscript n becomes the number of open bonds (in the ground state 0, in the dissociated state the total number of bonds or groups). Therefore we have to modify the transition probabilities: the probability that a bond is reestablished, Wn,n+1 is proportional to the number of open bonds, Wn+1,n, the probability that a bond breaks, proportional to the number of closed bonds. Allowing for an external force we are led to the following transition probabilities: Wn,n+1 = eβ(En+1+ Fλ N−n−1 )(n + 1)W0,1 , Wn+1,n = eβ(En+ Fλ N−n )(N − n)W0,1 . (5) F is the total force trying to tear the moleculeAB apart and is assumed to be equally distributed over the bonds or groups of bonds; λ is the proportionality constant in the dependence of the free energy on the force. Note that by (5) detailed balance is satisfied when taking the degeneracy of each state into account: gmWnmx e m = gnWmnx e n (6) with gn = ( N n ) and xe n the probability distribution in equilibrium xe n ∝ e−β(En+ Fλ N−n ). (7) The first passage time is the time a molecule needs to reach the absorbing barrier for the first time. The distribution of the first passage times is proportional to the number of molecules passing this barrier at a certain time and is given by p(t) = WN,N−1xN−1(t). (8) 2. Numerical solution First we transform the matrix of our system of differential equations into a symmetrical one. The transformation xi = biyi (9) with constant coefficients bi yields the recurrence relation bi = √ ai,i−1 ai−1,i bi−1 . (10) We choose b0 = 1; the elements of B are then given by Bi,i−1 = ai,i−1 bi−1 bi = √ ai−1,iai,i−1, (11) 363 S.Katletz, U.M.Titulaer which is obviously symmetric. The solution of the new system of differential equa- tions is given by ~y(t) = ∑ αi ~ξie λit, (12) where ~ξi is the eigenvector to the eigenvalue λi satisfying B · ~ξi = λi ~ξi . (13) The eigenvectors ~ξi are orthogonal and can be normalized. Then the linear coeffi- cients αi are determined by the initial values of ~x and hence ~y: ~y(0) = ∑ αi ~ξi , (14) αi = ~y(0) · ~ξi . (15) As an initial distribution we choose the Boltzmann distribution, xn(0) = exp(−En/kBT ) ∑ exp(−En/kBT ) . (16) Using (8), the distribution of first passage times is given by p(t) = WN,N−1bN−1yN−1(t) = WN,N−1bN−1 ∑ αiξi[N−1]e λit, (17) where ξi[N−1] denotes the N − 1th component of ~ξi. In case of a time dependent force, (12) is applied for small time interval ∆t during which the force can be assumed to be constant. The solution ~y(t + ∆t) is taken as the new initial value with a new force and a new transition matrix B. 2.1. Zero force The method described above was used to solve the differential equation for var- ious total energies EN and total number of bond groups N . The mean first passage time when there is no force τ0 = ∫ p(t)tdt, (18) corresponds to the inverse of the dissociation rate 1/koff which was measured exper- imentally [2]. Thus the factor W01 can be determined. 2.2. Constant force Figure 3 shows the ratio τ/τ0 of mean first passage times. Its dependence on the number of bonds and on the applied force is shown. The mean first passage time decreases exponentially with the applied force, a slope being determined by the total number of bonds. 364 Antibody-antigen binding 2 4 6 8 10 12 14 16 18 20 N 10 −1 10 0 10 1 10 2 10 3 10 4 τ0 [a.u.] E/kBT=5 E/kBT=10 E/kBT=15 E/kBT=20 E/kBT=25 E/kBT=30 E/kBT=50 Figure 2. τ0 as a function of N and E/kBT 0 2 4 6 8 10 12 14 16 18 20 N 0 0.2 0.4 0.6 0.8 τ/τ0 E/kBT=20 Fλ/kBT=5 Fλ/kBT=10 Fλ/kBT=15 Fλ/kBT=20 Fλ/kBT=25 Fλ/kBT=30 Fλ/kBT=40 0 10 20 30 40 50 Fλ/kBT 10 −11 10 −9 10 −7 10 −5 10 −3 10 −1 τ/τ0 E/kBT=20 N=2 N=4 N=6 N=8 N=10 N=14 N=20 Figure 3. The mean first passage time at constant forces 365 S.Katletz, U.M.Titulaer 0 2 4 6 8 10 12 14 16 18 20 N 0 0.2 0.4 0.6 0.8 τ/τ0 E/kBT=20 ω=10 ω=40 ω=70 ω=100 ω=130 ω=160 ω=190 0 200 400 600 800 1000 ω 10 −2 10 −1 10 0 τ/τ0 E/kBT=20 N=4 N=8 N=12 N=16 N=20 Figure 4. The mean first passage time at linearly increasing force 10 100 1000 ω 0 50 100 150 fu E/kBT=25 N=4 N=6 N=8 N=12 Figure 5. Mean rupture force 0 100 200 F [pN] 0 0.01 0.02 0.03 p ω=300 N=4 3 Hz N=6 N=8 Figure 6. Distribution of rupture forces 2.3. Linearly increasing force Finally a force varying according to F (t)λ kBT = ω t τ0 (19) was inserted into the differential equation. Figure 4 shows the dependence of the mean first passage time on the total number of bonds and the pulling velocity. We are also able to identify the distribution of rupture forces with the distribution of first passage times if we draw F (t) instead of t. Furthermore we can compare these results with the experiments performed at the Institute of Biophysics at the University of Linz [3,4]. Figure 5 shows that the mean rupture force increases roughly logarithmically with the pulling velocity, a fact also observed in the experiments. The slope is 366 Antibody-antigen binding determined by the number of groups. Finally we tried to fit the experimental rupture force distributions (antibody HyHel 8, cantilever with spring constant 30pN/nm, scanning frequency 3Hz) with our model as shown in figure 6. With our choice of λ = 1.2nm and ω = 300 the system with 4 groups seems to fit the data best. 3. Conclusions Though there is still some disagreement between experimental and theoretical distributions of the rupture force, the dependence of the mean rupture force on the pulling velocity shows that the model is capable of describing the experiment on the right time scale. The difference may be due to the nonlinear increase of the force that actually acted on the binding [5]. In a further investigation this nonlinear force increase will be used, allowing a better way of determining the force constant λ. Another modification that will be necessary is to relax the condition that a group of bonds open or close together instantaneously. Although a high degree of correlation is plausible on biophysical grounds, a complete correlation is certainly too rough an approximation to obtain quantitative agreement with the experiments. Acknowledgements: It is a pleasure to thank Prof. Hansgeorg Schindler, Dr. Pe- ter Hinterdorfer and Ms Anneliese Raab (Institute of Biophysics) for very fruitful discussions. References 1. Montroll E.W., Shuler K.E. The application of the theory of stochastic processes to chemical kinetics. Advances in Chemical Physics 1 (I. Prigogine ed., Interscience, New York 1958), p. 361–399. 2. Mohan S., Smith-Gill S.J. Conformational flexibility and cognitive properties of cross- reactive high affinity antibodies. // to be published. 3. Hinterdorfer P., Baumgartner W., Gruber H.J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force mi- croscopy. // Proc. Natl. Acad. Sci. USA, 1996, vol. 93, p. 3477–3481. 4. Hinterdorfer P., Raab A., Badt D., Smith-Gill S.J., Schindler H. Force spectroscopy of antibody-antigen recognition measured by scanning force microscopy. // Biophys. J., 1998, vol. 74 (2), p. A 186. 5. The force vs. extension dependence of the spacer molecule PEG, which connects the antibody to the cantilever of the AFM, agrees very well with the freely joint chain model. In this model the extension is given by the Langevin equation plus a linear dependence due to the cantilever. x = Nl ( coth FL kBT − kBT FL ) + F k (20) L is the Kuhn length, Nl the contour length of the polymer, k the spring constant of the cantilever. See for example: Eyring H., Henderson D., Jones Stover B., Eyring E.M. Statistical Mechanics and Dynamics. New York, John Wiley & Sons, 1964. 367 S.Katletz, U.M.Titulaer Статистична модель зв’язування антитіло-антиген С.Катлєц, У.Тітуляр Інститут теоретичної фізики, Університет Йогана Кеплера Австрія, Лінц, Алтенбергштрассе, 69 Отримано 6 липня 1998 р. Обговорюється статистична модель, яка описує зв’язування анти- тіло-антиген. При цьому вважається, що дві макромолекули можуть поєднуватись через набір відносно слабих зв’язків (чи груп скоре- льованих зв’язків), що відкриваються і закриваються статистично. Ця модель використовується для попереднього аналізу експериментів, виконаних в Інституті біофізики Університету Йогана Кеплера. У цих експериментах дві молекули приводились у контакт, використовую- чи атомної сили мікроскоп, а потім прикладалася певна залежна від часу сила до зв’язку і вимірювався розподіл часів, необхідних для по- вного розділення молекул. Ця характеристика розраховується з ви- користанням запропонованої моделі; знайдена її залежність від мо- дельних параметрів (вільних енергій зв’язування, числа груп скоре- льованих елементарних зв’язків, залежності вільної енергії зв’язу- вання від сили). Ключові слова: вільні блукання, однокрокові процеси, час першої події, час дисоціації, антитіло-антиген зв’язування PACS: 87.15.B, 87.80, 82.20.M, 05.20, 05.40 368