Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles

The density, charge, polarization and potential profiles of a simple model of an associative electrolyte are studied in an associative mean spherical approximation (AMSA). The limits of the full association and complete disassociation are considered.

Збережено в:
Бібліографічні деталі
Дата:2001
Автори: Kapko, V.I., Holovko, M.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2001
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/120423
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles / V.I. Kapko, M.F. Holovko // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 201-208. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-120423
record_format dspace
spelling irk-123456789-1204232017-06-13T03:04:47Z Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles Kapko, V.I. Holovko, M.F. The density, charge, polarization and potential profiles of a simple model of an associative electrolyte are studied in an associative mean spherical approximation (AMSA). The limits of the full association and complete disassociation are considered. Профілі густини, заряду, поляризації і потенціалу простої моделі асоціативного електроліту вивчаються в асоціативному середньо-сферичному наближенні (АССН). Розглядаються границі повної асоціації і дисоціації. 2001 Article Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles / V.I. Kapko, M.F. Holovko // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 201-208. — Бібліогр.: 9 назв. — англ. 1607-324X PACS: 05.20.-y DOI:10.5488/CMP.4.2.201 http://dspace.nbuv.gov.ua/handle/123456789/120423 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The density, charge, polarization and potential profiles of a simple model of an associative electrolyte are studied in an associative mean spherical approximation (AMSA). The limits of the full association and complete disassociation are considered.
format Article
author Kapko, V.I.
Holovko, M.F.
spellingShingle Kapko, V.I.
Holovko, M.F.
Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles
Condensed Matter Physics
author_facet Kapko, V.I.
Holovko, M.F.
author_sort Kapko, V.I.
title Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles
title_short Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles
title_full Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles
title_fullStr Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles
title_full_unstemmed Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles
title_sort associative electrolyte solution near the charge hard wall. density, charge, polarization and potential profiles
publisher Інститут фізики конденсованих систем НАН України
publishDate 2001
url http://dspace.nbuv.gov.ua/handle/123456789/120423
citation_txt Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles / V.I. Kapko, M.F. Holovko // Condensed Matter Physics. — 2001. — Т. 4, № 2(26). — С. 201-208. — Бібліогр.: 9 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kapkovi associativeelectrolytesolutionnearthechargehardwalldensitychargepolarizationandpotentialprofiles
AT holovkomf associativeelectrolytesolutionnearthechargehardwalldensitychargepolarizationandpotentialprofiles
first_indexed 2025-07-08T17:51:30Z
last_indexed 2025-07-08T17:51:30Z
_version_ 1837102103196073984
fulltext Condensed Matter Physics, 2001, Vol. 4, No. 2(26), pp. 201–208 Associative electrolyte solution near the charge hard wall. Density, charge, polarization and potential profiles V.I.Kapko, M.F.Holovko Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine Received August 26, 2000 The density, charge, polarization and potential profiles of a simple model of an associative electrolyte are studied in an associative mean spherical approximation (AMSA). The limits of the full association and complete dis- association are considered. Key words: electrolyte-electrode interface, associative mean spherical approximation PACS: 05.20.-y A set of important results for the electrode-electrolyte interface description can be obtained on the basis of models and methods, which have been developed and tested previously for bulk systems with electrostatic interactions and then general- ized for inhomogeneous systems. The Henderson-Abraham-Barker (HAB) approach [1] enables us to describe the interface properties through the bulk properties of fluids. The simplest ion-dipole model for an electrolyte in the mean spherical ap- proximation (MSA) [2] has been used to investigate the electrolyte properties near the charged wall by Blum and Henderson [3]. Recently the associative mean spherical approximation (AMSA) was solved [4], within the frameworks of which the analyti- cal solution of the ion-dipole mixture against the charge hard wall has been obtained [5]. The purpose of this note is to discuss the influence of interionic association on the density, charge, polarization and potential profiles. Our system consists of a mixture of charged hard spheres and dipolar hard spheres near the charged hard wall. Let us call ρ+,ρ−,ρd (ρ+ = ρ− = ρi/2) the number density of the cations, anions and solvent, respectively. The diameters of all particles are equal to σ. The modules of the charges of the cations and anions are also equal (Z+e = −Z−e=q). The oppositely charged ions can form the neutral pairs due to the attractive sites placed on the surface of each ion. The associative version of the wall-particle Ornstein-Zernike (OZ) equation can c© V.I.Kapko, M.F.Holovko 201 V.I.Kapko, M.F.Holovko be written as hβ y (z,Ω2) = cβy (z,Ω2) + ∑ x ∑ γδ ∫ d3hγ x(z ′,Ω3)ρ γδ x Cδβ xy (32) (1) together with MSA closure relations hβ y (z,Ω2) = −δβ0, r12 < σ/2 cβy (z,Ω2) = −δβ0 uel y (z) kT , r12 > σ/2, (2) where hβ y (z,Ω2), c β y (z,Ω2) are the vectors of the pair and direct wall-particle correla- tion functions, z is the distance of the particle from the wall surface, Ω2 orientation of dipolar moment. Subscripts x and y point at the sort of the particle and super- scripts α, β, γ and δ at the degree of bonding (0 for bonded and 1 for unbonded particle). Cαβ xy (12) is the matrix of the direct correlation functions for the bulk phase. d3 means integration over the positions ~r3 and possible orientations of the dipole. The wall particle interaction is for the ion uel i (z) = −eE z (3) and for the dipole uel s (z) = −(~µ ~E), (4) where ~E is the bare (unscreened) electric field, which is connected with the surface charge density on the wall qs by E = 4π qs . (5) Matrix of density is defined as [6,7] ρ00x = ρx, ρ01x = ρ10x = ρ0x, ρ11x = 0, where ρx is the total density of particles of sort x and ρ0 x is density of unbonded particles of sort x, which are connected by self-consistent relation [8]: ρi = ρ0i + 2π(ρ0i ) 2σ3Bg00+− (σ+). (6) The analytical solution can be represented in the form of the two integral equa- tions: g(S)βy (z)− ∑ x ∑ γδ ρ∗x z ∫ 0 g(S)γx (z − r)Rγδ x Q(S)δβ xy (r)dr = Kβ y (0), (7) √ ρ∗yh (D)β y (z)− ∑ x ∑ γδ √ ρ∗x z ∫ 0 h(D)γ x (z − r)Rγδ x Q(D)δβ xy (r)dr = −F β y (z). (8) The expressions for Q̂(S)(r), Q̂(D)(r), Kβ y (0) and F β y (z) can be found in [5]. The density profiles are connected with the functions g (S)β y (z) and h (D)β y (z) by g±(z) = 1 ∑ β=0 ( g (S)β i (z)± h (D)β i (z) ) , (9) gd(z,Θ) = g (S)0 d (z) + √ 3h (D)0 d (z) cos(Θ) (10) 202 Associative electrolyte solution near the charge hard wall with Θ the angle between the dipolar moment and the normal to the wall. It must be pointed out that the factor ρ0i /ρi is included in g (S)1 i (z) and h (D)1 i (z) in contrast to Wertheim’s definition [6,7]. This avoids the uncertainty in the case of full association (ρ0i = 0). We solve numerically the integral equations (7) and (8) by the well-known Per- ram’s method [9]. The profiles in figures 1–4, 7–8 have been calculated by parameters η = π/6× (ρiσ 3 + ρdσ 3) = 0.3178, ci = ρi/(ρi + ρd) = 0.0115, q∗ 2 = Z2 i e 2 σkT = 40, µ∗ 2 = µ2 σ3kT = 2.5, E∗ = √ σ3 kT E = 1.5, which correspond to the Debye screening region. The ionic densities in the curves plotted in the figures 4 and 5 are ci = 0.11 and ci = 0.5 which correspond the short- range ionic ordering and the short density ordering near the wall, respectively. We consider the three cases of the ionic association in all figures: (a) corresponds to the case of the complete dissociation (the ionic monomer fraction α = ρ0 i /ρi = 1); (b) corresponds to α = 0.5; (c) corresponds to the case of the fully ionic dimerization α = 0. The charge profiles at the low ionic concentration are plotted in figure 4. The charge profile at α = 0.5 is close to the one for the free ions. The curve for the fully dimerized ions is less than the charge profiles for (a) and (b) cases. At z = 1.5σ the curve (c) has a sharp maximum which indicates an orthogonal configuration of the dimers. Figure 5 corresponds to the middle ionic concentration c i = 0.11. For the fully dimerized ions (c) the charge profile sign change is observed at the first maximum region. At z < 0.8σ all the curves coincide. For bigger distances (z > 2σ) – after the first minimum the charge profiles decay fast. In figure 6 the charge profiles for the comparatively high concentration c i = 0.5 are shown. Under such conditions the dimerization process exerts no influence on the charge profiles. At z > 1.5σ we observe some lag between (c)-(b), (b)-(a), (c)-(a) profiles. The polarization profiles (figure 7) possess the oscillative behaviour which cor- responds to a solvent discrete structure. At high distances (z > 2.5σ) the higher degree of the ionic association leads to the increase of a solvent polarization. The potential profiles are plotted in figure 8. They also show the oscillative behaviour and decay at high z. The association leads to potential profiles increasing especially for low α. 203 V.I.Kapko, M.F.Holovko -1 0 1 2 0.5 1.5 2.5 3.5 g+(z) z/σ a b c Figure 1. The density profiles of cations at ci = 0.0115. 1 2 3 0.5 1.5 2.5 3.5 g−(z) z/σ a b c Figure 2. The density profiles of anions at ci = 0.0115. 204 Associative electrolyte solution near the charge hard wall 0 1 2 3 0.5 1.5 2.5 3.5 g (S) d (z) z/σ a,b,c Figure 3. The S-part of solvent density profiles at ci = 0.0115. -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 q∗(z) z/σ a b c Figure 4. The charge profiles at ci = 0.0115. 205 V.I.Kapko, M.F.Holovko -0.3 -0.2 -0.1 0 0.1 0.5 1 1.5 2 2.5 3 3.5 q∗(z) z/σ a b c Figure 5. The charge profiles at ci = 0.11. -0.3 -0.2 -0.1 0 0.1 0.5 1 1.5 2 2.5 3 3.5 q∗(z) z/σ a b c ✯ Figure 6. The charge profiles at ci = 0.5. 206 Associative electrolyte solution near the charge hard wall 0 0.05 0.1 0.15 0.5 1.5 2.5 3.5 4.5 5.5 P ∗(z) z/σ a b c Figure 7. The polarization profiles at ci = 0.0115. -0.2 0 0.2 0.4 0.6 0.5 1.5 2.5 3.5 Ψ∗(z) z/σ a b c Figure 8. The potential profiles at ci = 0.0115. 207 V.I.Kapko, M.F.Holovko References 1. Henderson D., Abraham F.F., Barker J.A. // Molec. Phys., 1976, vol. 31, p. 129. 2. Blum L. // J. Chem. Phys., 1974, vol. 61, p. 2129. 3. Blum L., Henderson D. // J. Chem. Phys., 1981, vol. 74, p. 1902. 4. Holovko M.F., Kapko V.I. // Condens. Matter Phys., 1998, vol. 1, p. 239. 5. Holovko M.F., Kapko V.I. (in preparation). 6. Wertheim M.S. // J. Stat. Phys., 1984, vol. 35, p. 19. 7. Wertheim M.S. // J. Stat. Phys., 1984, vol. 35, p. 35. 8. Holovko M.F., Kalyuzhnyi Yu.V. // Mol. Phys., 1991, vol. 73, p. 1145. 9. Perram J.W. // Mol. Phys., 1975, vol. 30, p. 1505. Асоціативний електроліт біля зарядженої твердої стінки. Профілі густини, заряду, поляризації і потенціалу В.І.Капко, М.Ф.Головко Інститут фізики конденсованих систем НАН України, 79011 Львів, вул. Свєнціцького, 1 Отримано 26 серпня 2000 р. Профілі густини, заряду, поляризації і потенціалу простої моделі асо- ціативного електроліту вивчаються в асоціативному середньо-сфе- ричному наближенні (АССН). Розглядаються границі повної асоціації і дисоціації. Ключові слова: інтерфейс електроліт-електрод, асоціативне середньо-сферичне наближення PACS: 05.20.-y 208